Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notch signaling molecule important in type 2 immunity

19.10.2005


Findings may lead to new treatments for asthma and other inflammatory-related diseases


Cross-sections of the parasitic worm Trichuris in the lumen of the mouse gut (left). Trichuris lives partially embedded in host intestinal epithelial cells. Protective T helper cells secrete molecules called cytokines that induce cells in the gut to produce mucus (right, intestinal goblet cell, stained blue). This mucus production is typical of a Th2 response. In the case of the lung, this same type of response induces mucus production that contributes to breathing difficulties typically suffered during an asthma attack. The absence of this mucus response in mice lacking Notch is consistent with a role for this pathway in controlling Th2 inflammation.



Defects in immune system cells called T helper cells may lead to diseases characterized by a faulty inflammatory response such as autoimmunity and asthma. Understanding the molecular steps involved in how T helper cells mature may help researchers develop treatments for these diseases.

Helper T cells differentiate into two different types of cells –Th1 or Th2 – which are responsible for regulating immunity to different types of pathogens. Now, researchers at the University of Pennsylvania School of Medicine have shed light on a key molecular switch in this differentiation.


Notch is a protein that is a critical regulator of the process by which stem and other multipotent cells take on a specialized function, such as a T lymphocyte or a nerve cell in organisms ranging from fruitflies to humans. Using mice in which Notch signaling could be induced to turn off in mature T cells, the researchers showed that Notch signaling is an important determinant of whether an organism can mount an effective Th2 response. The mice lacking Notch signaling were unable to mount a protective Th2 cell response against infection by the gastrointestinal parasitic worm Trichuris muris. However, the mice did mount a healthy Th1 response to an infection by the intracellular parasite Leishmania major, showing that Notch signaling is specifically required for the Th2 arm of the immune system.

These findings indicate that regulating Notch signaling may have a therapeutic role in treating diseases caused by abnormally increased Th2 responses, such as asthma, autoimmunity, and some forms of inflammatory bowel disease. Drugs that inhibit Notch signaling, called gamma secretase inhibitors, are currently in clinical trials for T-cell leukemia and Alzheimer’s disease. This study – published in today’s issue of the Journal of Experimental Medicine – suggests that these drugs may be useful in treating diseases typified by increased Th2 responses.

Senior author Warren Pear, MD, PhD, Associate Professor of Pathology and Laboratory Medicine, was one of the original discoverers of the role of Notch signaling in T-cell development. Notch activates gene transcription in the nucleus of cells, and depending on the biochemical context, it turns certain pathways on and others off. "The potential importance of our study is that it shows that Notch signaling specifically influences Th2 immunity in a live animal when challenged with a pathogen, suggesting that drugs that inhibit Notch may be useful for treating diseases associated with a pathological Th2 response, such as asthma," says Pear. He is also a member of Penn’s Abramson Family Cancer Research Institute and The Institute for Medicine and Engineering.

Helper T cells fight many types of infectious diseases and are also the cells that regulate tolerance to self and the molecules that cause the pathogenesis of such inflammatory diseases as arthritis, inflammatory bowel disease, and asthma. Antigen-presenting cells take up pathogens and migrate to the spleen or lymph nodes, where they instruct immature T cells how to differentiate into Th1 or Th2 helper T cells, killer T cells, or other types of immune system cells.

Some of the factors that signal a T cell to become Th1 or Th2 cells are well characterized, but some are not. "The role of Notch in that decision-making has been controversial," says co-author Terry Fang, a graduate student in Penn’s Immunology Program. "And this paper weighs in on this." Some studies suggest that Notch is important for the Th1 pathway, others suggest both Th1 and Th2. This study suggests that there’s a specific requirement for Notch in Th2 differentiation only.

The specificity of Notch in regulating T-cell function is highlighted in this study. "Mice lacking Notch failed to control infection with a pathogen requiring a Th2 response, demonstrating that Notch is a critical regulator of this response," adds co-author David Artis, PhD, Assistant Professor at Penn’s School of Veterinary Medicine. "The ability of these same animals to mount strong Th1 responses demonstrates the specificity of the Notch pathway in regulating this important cell type of the immune system."

The potential clinical benefit of these new findings is that gamma secretase inhibitors may so on be available for testing in the clinics. One potential side effect of these drugs is that they inhibit other pathways besides Notch. In addition, inhibiting Notch may cause side effects because this protein is used in a wide variety of cellular processes. The new mouse model described in this paper may be particularly useful for identifying the consequences of turning Notch off in different organs, an important issue for assessing potential side effects of pharmacologic Notch inhibitors.

The current work provides the rationale for determining whether manipulating Notch signaling will be useful in combating such diseases as parasitic infections, asthma, and inflammatory bowel disease. "The exciting possibility is that therapies are available," says Pear. "The challenge, however, is determining their efficacy and safety."

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>