Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notch signaling molecule important in type 2 immunity

19.10.2005


Findings may lead to new treatments for asthma and other inflammatory-related diseases


Cross-sections of the parasitic worm Trichuris in the lumen of the mouse gut (left). Trichuris lives partially embedded in host intestinal epithelial cells. Protective T helper cells secrete molecules called cytokines that induce cells in the gut to produce mucus (right, intestinal goblet cell, stained blue). This mucus production is typical of a Th2 response. In the case of the lung, this same type of response induces mucus production that contributes to breathing difficulties typically suffered during an asthma attack. The absence of this mucus response in mice lacking Notch is consistent with a role for this pathway in controlling Th2 inflammation.



Defects in immune system cells called T helper cells may lead to diseases characterized by a faulty inflammatory response such as autoimmunity and asthma. Understanding the molecular steps involved in how T helper cells mature may help researchers develop treatments for these diseases.

Helper T cells differentiate into two different types of cells –Th1 or Th2 – which are responsible for regulating immunity to different types of pathogens. Now, researchers at the University of Pennsylvania School of Medicine have shed light on a key molecular switch in this differentiation.


Notch is a protein that is a critical regulator of the process by which stem and other multipotent cells take on a specialized function, such as a T lymphocyte or a nerve cell in organisms ranging from fruitflies to humans. Using mice in which Notch signaling could be induced to turn off in mature T cells, the researchers showed that Notch signaling is an important determinant of whether an organism can mount an effective Th2 response. The mice lacking Notch signaling were unable to mount a protective Th2 cell response against infection by the gastrointestinal parasitic worm Trichuris muris. However, the mice did mount a healthy Th1 response to an infection by the intracellular parasite Leishmania major, showing that Notch signaling is specifically required for the Th2 arm of the immune system.

These findings indicate that regulating Notch signaling may have a therapeutic role in treating diseases caused by abnormally increased Th2 responses, such as asthma, autoimmunity, and some forms of inflammatory bowel disease. Drugs that inhibit Notch signaling, called gamma secretase inhibitors, are currently in clinical trials for T-cell leukemia and Alzheimer’s disease. This study – published in today’s issue of the Journal of Experimental Medicine – suggests that these drugs may be useful in treating diseases typified by increased Th2 responses.

Senior author Warren Pear, MD, PhD, Associate Professor of Pathology and Laboratory Medicine, was one of the original discoverers of the role of Notch signaling in T-cell development. Notch activates gene transcription in the nucleus of cells, and depending on the biochemical context, it turns certain pathways on and others off. "The potential importance of our study is that it shows that Notch signaling specifically influences Th2 immunity in a live animal when challenged with a pathogen, suggesting that drugs that inhibit Notch may be useful for treating diseases associated with a pathological Th2 response, such as asthma," says Pear. He is also a member of Penn’s Abramson Family Cancer Research Institute and The Institute for Medicine and Engineering.

Helper T cells fight many types of infectious diseases and are also the cells that regulate tolerance to self and the molecules that cause the pathogenesis of such inflammatory diseases as arthritis, inflammatory bowel disease, and asthma. Antigen-presenting cells take up pathogens and migrate to the spleen or lymph nodes, where they instruct immature T cells how to differentiate into Th1 or Th2 helper T cells, killer T cells, or other types of immune system cells.

Some of the factors that signal a T cell to become Th1 or Th2 cells are well characterized, but some are not. "The role of Notch in that decision-making has been controversial," says co-author Terry Fang, a graduate student in Penn’s Immunology Program. "And this paper weighs in on this." Some studies suggest that Notch is important for the Th1 pathway, others suggest both Th1 and Th2. This study suggests that there’s a specific requirement for Notch in Th2 differentiation only.

The specificity of Notch in regulating T-cell function is highlighted in this study. "Mice lacking Notch failed to control infection with a pathogen requiring a Th2 response, demonstrating that Notch is a critical regulator of this response," adds co-author David Artis, PhD, Assistant Professor at Penn’s School of Veterinary Medicine. "The ability of these same animals to mount strong Th1 responses demonstrates the specificity of the Notch pathway in regulating this important cell type of the immune system."

The potential clinical benefit of these new findings is that gamma secretase inhibitors may so on be available for testing in the clinics. One potential side effect of these drugs is that they inhibit other pathways besides Notch. In addition, inhibiting Notch may cause side effects because this protein is used in a wide variety of cellular processes. The new mouse model described in this paper may be particularly useful for identifying the consequences of turning Notch off in different organs, an important issue for assessing potential side effects of pharmacologic Notch inhibitors.

The current work provides the rationale for determining whether manipulating Notch signaling will be useful in combating such diseases as parasitic infections, asthma, and inflammatory bowel disease. "The exciting possibility is that therapies are available," says Pear. "The challenge, however, is determining their efficacy and safety."

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>