Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Subtypes of ependymomas arise from rare stem cells in the nervous system

19.10.2005


Brain tumors called ependymomas that occur in different parts of the central nervous system appear to arise from subpopulations of stem cells called radial glia cells (RGCs), according to investigators at St. Jude Children’s Research Hospital. The discovery explains why some identical-looking ependymomas are actually distinctly different diseases, the researchers said.



This new information, in combination with the techniques used to conduct the study, holds promise for designing more effective treatments for ependymomas as well as for other solid tumors. A report on this work appears in the October issue of Cancer Cell. RGCs are unspecialized cells that line the surface of the ventricles (fluid-filled spaces in the brain) and the spinal cord, and give rise to normal mature cells in the nervous system. The St. Jude study found strong evidence that when rare populations of RGCs acquire mutations that disrupt the cell signaling pathways controlling growth and differentiation, these cells reproduce continually and give rise to an ependymoma.

The St. Jude finding that RGCs can give rise to these tumors is consistent with evidence from a variety of researchers that cancers arise from, and are maintained by, a rare number of mutated stem cells called cancer stem cells, according to Richard Gilbertson, M.D., Ph.D., associate member in the Developmental Neurobiology and the Hematology-Oncology departments. Gilbertson is senior author of the Cancer Cell paper.


The current discovery at St. Jude explains why ependymomas arising in various parts of the central nervous system are clinically different, even though they look the same histologically (as seen under a microscope), the St. Jude researcher said. For example, although all ependymomas look alike, supratentorial ependymomas arise in the top part of the brain in both adults and children; often cause weakness in the arms and legs, visual problems and seizures; and have a survival rate of 50-60 percent. Posterior fossa ependymomas arise in the back of the brain and cause patients to have an unsteady walk and neck pain; and they occur mainly in children and have a slightly worse prognosis than do surpratentorial tumors. A spinal ependymoma occurs mainly in adults, and more than 70 percent of patients who undergo surgery to remove this tumor survive.

"Historically, physicians based their diagnosis and treatment of cancer primarily on the histology of tumors," Gilbertson said. "So our demonstration that identical-looking ependymomas that arise in different regions of the central nervous system are distinct diseases at the cellular and molecular level is an important insight. This suggests that treatments should be designed to kill the cancer stem cells. If you kill only the cells making up the bulk of the tumor, the disease will likely return because you haven’t eliminated the stem cells that are the source of the tumor."

The St. Jude study is also important because ependymomas are the third most common central nervous system tumor in children and no effective chemotherapy exists for them. "If surgery and radiation doesn’t treat the entire tumor, then resistant stem cells left behind might re-grow the cancer," Gilbertson said. "And since children don’t tolerate radiation treatment well, we need new treatments that completely eliminate cells that produce the tumors."

The researchers made their discovery by first determining the patterns of gene expression in more than 100 tumor samples from patients with different types of ependymoma. Gene expression patterns, called signatures, reflect the specific genes that have been activated in the tumors. The signatures that distinguished supratentorial, posterior fossa and spinal ependymomas included genes that regulate the proliferation and differentiation of normal primitive cells in the corresponding region of the embryonic nervous system. For example, the St. Jude team showed that more than 80 percent of genes expressed at high levels in the supratentorial and spinal ependymomas are also expressed in the corresponding regions of the nervous system during development.

The team also demonstrated that each subtype of ependymoma contains rare populations of cells that resemble RGCs. Moreover, when these RGC-like ependymoma cancer stem cells were inserted into laboratory models that lacked protective immune systems, the stem cells formed tumors. This was additional strong evidence that mutated RGCs can give rise to ependymomas.

The different genetic signatures found in each subtype of ependymoma represent potential targets for new drugs designed to kill RGCs that give rise to each subtype of this tumor, said Gilbertson. Such individualized treatment might allow physicians to prevent the recurrence of ependymoma following treatment to remove the primary (original) tumor by eliminating the cancer stem cells that give rise to the tumor.

The technique the St. Jude team used to identify populations of RGCs as cells of origin of ependymoma could also be used to identify cancer stem cells for other solid tumors, according to Helen Poppleton, PhD, an associate scientist. "That new knowledge could lead to the development of new drugs that significantly improve the outcomes of a variety of cancers," Poppleton said. One of the authors of the paper, Poppleton did much of the work on this project.

Kelly Perry | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>