Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Subtypes of ependymomas arise from rare stem cells in the nervous system


Brain tumors called ependymomas that occur in different parts of the central nervous system appear to arise from subpopulations of stem cells called radial glia cells (RGCs), according to investigators at St. Jude Children’s Research Hospital. The discovery explains why some identical-looking ependymomas are actually distinctly different diseases, the researchers said.

This new information, in combination with the techniques used to conduct the study, holds promise for designing more effective treatments for ependymomas as well as for other solid tumors. A report on this work appears in the October issue of Cancer Cell. RGCs are unspecialized cells that line the surface of the ventricles (fluid-filled spaces in the brain) and the spinal cord, and give rise to normal mature cells in the nervous system. The St. Jude study found strong evidence that when rare populations of RGCs acquire mutations that disrupt the cell signaling pathways controlling growth and differentiation, these cells reproduce continually and give rise to an ependymoma.

The St. Jude finding that RGCs can give rise to these tumors is consistent with evidence from a variety of researchers that cancers arise from, and are maintained by, a rare number of mutated stem cells called cancer stem cells, according to Richard Gilbertson, M.D., Ph.D., associate member in the Developmental Neurobiology and the Hematology-Oncology departments. Gilbertson is senior author of the Cancer Cell paper.

The current discovery at St. Jude explains why ependymomas arising in various parts of the central nervous system are clinically different, even though they look the same histologically (as seen under a microscope), the St. Jude researcher said. For example, although all ependymomas look alike, supratentorial ependymomas arise in the top part of the brain in both adults and children; often cause weakness in the arms and legs, visual problems and seizures; and have a survival rate of 50-60 percent. Posterior fossa ependymomas arise in the back of the brain and cause patients to have an unsteady walk and neck pain; and they occur mainly in children and have a slightly worse prognosis than do surpratentorial tumors. A spinal ependymoma occurs mainly in adults, and more than 70 percent of patients who undergo surgery to remove this tumor survive.

"Historically, physicians based their diagnosis and treatment of cancer primarily on the histology of tumors," Gilbertson said. "So our demonstration that identical-looking ependymomas that arise in different regions of the central nervous system are distinct diseases at the cellular and molecular level is an important insight. This suggests that treatments should be designed to kill the cancer stem cells. If you kill only the cells making up the bulk of the tumor, the disease will likely return because you haven’t eliminated the stem cells that are the source of the tumor."

The St. Jude study is also important because ependymomas are the third most common central nervous system tumor in children and no effective chemotherapy exists for them. "If surgery and radiation doesn’t treat the entire tumor, then resistant stem cells left behind might re-grow the cancer," Gilbertson said. "And since children don’t tolerate radiation treatment well, we need new treatments that completely eliminate cells that produce the tumors."

The researchers made their discovery by first determining the patterns of gene expression in more than 100 tumor samples from patients with different types of ependymoma. Gene expression patterns, called signatures, reflect the specific genes that have been activated in the tumors. The signatures that distinguished supratentorial, posterior fossa and spinal ependymomas included genes that regulate the proliferation and differentiation of normal primitive cells in the corresponding region of the embryonic nervous system. For example, the St. Jude team showed that more than 80 percent of genes expressed at high levels in the supratentorial and spinal ependymomas are also expressed in the corresponding regions of the nervous system during development.

The team also demonstrated that each subtype of ependymoma contains rare populations of cells that resemble RGCs. Moreover, when these RGC-like ependymoma cancer stem cells were inserted into laboratory models that lacked protective immune systems, the stem cells formed tumors. This was additional strong evidence that mutated RGCs can give rise to ependymomas.

The different genetic signatures found in each subtype of ependymoma represent potential targets for new drugs designed to kill RGCs that give rise to each subtype of this tumor, said Gilbertson. Such individualized treatment might allow physicians to prevent the recurrence of ependymoma following treatment to remove the primary (original) tumor by eliminating the cancer stem cells that give rise to the tumor.

The technique the St. Jude team used to identify populations of RGCs as cells of origin of ependymoma could also be used to identify cancer stem cells for other solid tumors, according to Helen Poppleton, PhD, an associate scientist. "That new knowledge could lead to the development of new drugs that significantly improve the outcomes of a variety of cancers," Poppleton said. One of the authors of the paper, Poppleton did much of the work on this project.

Kelly Perry | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>