Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarker test may give early warning of brain woes

19.10.2005


A way to detect fragments of broken brain cells that leak into the bloodstream may help doctors more quickly and precisely treat people with severe head injuries or brain diseases, say researchers at the University of Florida’s McKnight Brain Institute.



UF scientists have discovered they can use an approach similar to one commonly used in HIV or pregnancy testing to find bits of axons - nerve fibers that help brain cells communicate - in the blood and spinal fluid of laboratory rats modeling human spinal cord or traumatic brain injuries.

The discovery could lead to tests for the clinic or battlefield to diagnose ailments with just a few drops of blood, bypassing cumbersome and expensive CT or MRI brain scanning equipment. The researchers report their findings in the current online edition of Biochemical and Biophysical Research Communications.


The cellular debris, derived from a protein called NF-H, was not found in the blood or other fluids of healthy animals and humans. That leads researchers to believe it is a biomarker, a substance in blood that signals the presence of disease or injury.

"We could easily see that this particular protein is detectable very soon after a disease starts or an injury occurs," said Gerry Shaw, Ph.D., a professor of neuroscience in the College of Medicine. "A lot more of it is then released in the two or three days following a brain or spinal cord injury, which is interesting because it signals a kind of brain cell death that you could potentially do something about therapeutically."

The test would be helpful in emergency rooms or in combat situations if it could be developed into a simple handheld device that could confirm brain or spinal injury.

"Shaken-soldier syndrome is a traumatic brain injury that shows in veterans who have survived roadside blasts," said Douglas Anderson, Ph.D., chairman of neuroscience at the McKnight Brain Institute who participated in the research. "In patients who are unconscious but with no penetrating head wounds, it would be extremely helpful for emergency medical technicians to test for a marker to see how severe the injuries are. Then perhaps something can be done early on."

Shaw, who, along with UF, has interest in a company to market the biotechnology, said studies already under way will seek to determine whether the protein is detectable in people who have had strokes or who suffer from amyotrophic lateral sclerosis, a debilitating disorder frequently referred to as ALS or Lou Gehrig’s disease. Further studies will evaluate patients suffering from Alzheimer’s disease and other serious damage and disease states of the nervous system.

Drug researchers can already use the technique to monitor the effectiveness of experimental medicines in animal models of stroke and traumatic brain injury.

"This may become an important clinical marker, but it’s also important in terms of experimental work for basic scientists," said Dena Howland, Ph.D., an assistant professor of neuroscience at UF who investigates therapies for spinal cord repair and another of the paper’s authors. "It’s a way for us to assess whether our interventions are working."

Investigators detect the NF-H protein with a widely used screening method called an ELISA, short for enzyme-linked immunosorbent assay. Versions of it are used to test women for pregnancy and screen patients for HIV. It uses components of the immune system called antibodies, which have a natural affinity to latch onto certain compounds.

In this case, Shaw developed antibodies that react positively to the presence of NF-H. The structure of the molecule lends itself to easy detection, because it contains protein sequences that are repeated dozens of times, each of which can be bound by a detection antibody, increasing the sensitivity of the test. Other potential biomarkers may be identifiable by only one short, non-repeating sequence, making the task more difficult.

"NF-H is a very stable protein; one that does not degrade easily," said Jean-Pierre Julien, Canada research chair in the mechanisms of neurodegeneration at the Université Laval in Quebec, who was not connected with the UF study. "It makes sense that when there is damage to axons this protein would be released and would be detectable."

The next step is for researchers to determine whether the release of NF-H is a universal characteristic of all brain injury and disease.

If so, scientists hope the test will give early warning of disorders such as ALS, Parkinson’s disease and Alzheimer’s disease, which do much damage before actual symptoms appear in patients.

John Pastor | EurekAlert!
Further information:
http://www.health.ufl.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>