Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarker test may give early warning of brain woes

19.10.2005


A way to detect fragments of broken brain cells that leak into the bloodstream may help doctors more quickly and precisely treat people with severe head injuries or brain diseases, say researchers at the University of Florida’s McKnight Brain Institute.



UF scientists have discovered they can use an approach similar to one commonly used in HIV or pregnancy testing to find bits of axons - nerve fibers that help brain cells communicate - in the blood and spinal fluid of laboratory rats modeling human spinal cord or traumatic brain injuries.

The discovery could lead to tests for the clinic or battlefield to diagnose ailments with just a few drops of blood, bypassing cumbersome and expensive CT or MRI brain scanning equipment. The researchers report their findings in the current online edition of Biochemical and Biophysical Research Communications.


The cellular debris, derived from a protein called NF-H, was not found in the blood or other fluids of healthy animals and humans. That leads researchers to believe it is a biomarker, a substance in blood that signals the presence of disease or injury.

"We could easily see that this particular protein is detectable very soon after a disease starts or an injury occurs," said Gerry Shaw, Ph.D., a professor of neuroscience in the College of Medicine. "A lot more of it is then released in the two or three days following a brain or spinal cord injury, which is interesting because it signals a kind of brain cell death that you could potentially do something about therapeutically."

The test would be helpful in emergency rooms or in combat situations if it could be developed into a simple handheld device that could confirm brain or spinal injury.

"Shaken-soldier syndrome is a traumatic brain injury that shows in veterans who have survived roadside blasts," said Douglas Anderson, Ph.D., chairman of neuroscience at the McKnight Brain Institute who participated in the research. "In patients who are unconscious but with no penetrating head wounds, it would be extremely helpful for emergency medical technicians to test for a marker to see how severe the injuries are. Then perhaps something can be done early on."

Shaw, who, along with UF, has interest in a company to market the biotechnology, said studies already under way will seek to determine whether the protein is detectable in people who have had strokes or who suffer from amyotrophic lateral sclerosis, a debilitating disorder frequently referred to as ALS or Lou Gehrig’s disease. Further studies will evaluate patients suffering from Alzheimer’s disease and other serious damage and disease states of the nervous system.

Drug researchers can already use the technique to monitor the effectiveness of experimental medicines in animal models of stroke and traumatic brain injury.

"This may become an important clinical marker, but it’s also important in terms of experimental work for basic scientists," said Dena Howland, Ph.D., an assistant professor of neuroscience at UF who investigates therapies for spinal cord repair and another of the paper’s authors. "It’s a way for us to assess whether our interventions are working."

Investigators detect the NF-H protein with a widely used screening method called an ELISA, short for enzyme-linked immunosorbent assay. Versions of it are used to test women for pregnancy and screen patients for HIV. It uses components of the immune system called antibodies, which have a natural affinity to latch onto certain compounds.

In this case, Shaw developed antibodies that react positively to the presence of NF-H. The structure of the molecule lends itself to easy detection, because it contains protein sequences that are repeated dozens of times, each of which can be bound by a detection antibody, increasing the sensitivity of the test. Other potential biomarkers may be identifiable by only one short, non-repeating sequence, making the task more difficult.

"NF-H is a very stable protein; one that does not degrade easily," said Jean-Pierre Julien, Canada research chair in the mechanisms of neurodegeneration at the Université Laval in Quebec, who was not connected with the UF study. "It makes sense that when there is damage to axons this protein would be released and would be detectable."

The next step is for researchers to determine whether the release of NF-H is a universal characteristic of all brain injury and disease.

If so, scientists hope the test will give early warning of disorders such as ALS, Parkinson’s disease and Alzheimer’s disease, which do much damage before actual symptoms appear in patients.

John Pastor | EurekAlert!
Further information:
http://www.health.ufl.edu

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>