Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Genetic Test Can Detect Clam Disease

18.10.2005


A sensitive new genetic test can now detect a crippling disease called QPX occurring in clam beds from Cape Cod south to Virginia and north to Canada. Although it does not affect humans and it is not as well known as red tide, the disease can have a significant impact on a local economy by killing clams and devastating shellfish harvests and commercial aquaculture operations.



QPX - for quahog parasite unknown - is a single-celled organism related to slime mold. It was first detected in 1995 in Provincetown, MA and spread to nearby clam beds, killing nine of ten clams in many of the beds. The disease spreads from clam to clam, infecting the clam by secreting a thick mucus layer to insulate itself from the clam’s immune system.

Rebecca Gast, an associate scientist in the Biology Department at Woods Hole Oceanographic Institution (WHOI), has developed a genetic test to detect the organism not only in clams but in seawater and sediment. Since QPX also decomposes seaweed, researchers now believe it can be found in all coastal waters but doesn’t become deadly to clams until it reaches a critical concentration in the water.


Gast notes that although red tide got a lot of media attention this year, QPX is actually a bigger problem. The toxins that cause red tide in clams and other shellfish in New England do not kill the shellfish and will wash away once the red tide bloom diminishes, eventually making the shellfish safe to eat. QPX kills the clams, and there is no known cure.

Gast is working with Roxanna Smolowitz, a veterinarian at the nearby Marine Biological Laboratory, to find out what triggers the organisms to reach concentrations that become deadly, and whether that threshold varies among clam strains. Smolowitz uses traditional microscopic examination of tissues to determine if clams are sick.

Gast’s genetic test can now also be used to ensure clams without visible symptoms are not carrying the disease. With the disease spreading along the East Coast and no cure, the researchers say the best solution for shellfishermen and aquaculture operations is to keep infection levels as low as possible and try to keep seed clams free of the disease. One possible remedy may be rotating shellfish crops, much like farmers do on land.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>