Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Restoring silenced suppressor gene kills lung-cancer cells

17.10.2005


A new study suggests that restoring a gene often silenced in lung cancer causes the cells to self-destruct. The findings could lead to a new strategy for treating the disease.



The research focused on a gene known as WWOX, which is lost or silenced in a large majority of lung cancers, and in cancers of the breast, ovary, prostate, bladder, esophagus and pancreas. The work was led by scientists at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute.

The study showed that both in the laboratory and in animal experiments, restoring the missing or silenced WWOX gene can slow or stop the cells’ growth.


The study also showed that the reactivated gene is highly effective in stopping the growth of human lung tumors that have been transplanted into mice.

The findings are published online in the Oct. 13 Early Edition of the Proceedings of the National Academy of Sciences.

The American Cancer Society expects more than 172,500 Americans to develop lung cancer in 2005, and more than 163,500 people to die of the disease, making it the most common cause of cancer death in the U.S.

“Our findings show that restoring the WWOX gene in lung-cancer cells that don’t express it will kill that lung-cancer cell,” says coauthor Kay Huebner, professor of molecular virology, immunology and medical genetics and a researcher with the OSU Comprehensive Cancer Center .

“This suggests that if this gene could be delivered to, or reactivated in, the tumor cells of lung-cancer cases that are deficient in this gene, it should have a therapeutic effect.”

WWOX is a tumor suppressor gene. Tumor suppressor genes safeguard the body by triggering the death of cells that have sustained serious DNA damage before the cells become cancerous. The loss or silencing of tumor suppressor genes is a fundamental cause of tumor development.

The WWOX protein is missing in cells making up many lung tumors, and in 62 percent of cases, the gene is turned off by a chemical process known as methylation.

“There is nothing wrong with those genes except that they are silenced by methylation,” Huebner says. “Experimental drugs are now being tested that cause demethylation and may reactivate WWOX and other genes.”

For this study, Huebner and her colleagues used three different lines of laboratory-grown lung-cancer cells that were missing WWOX protein. The researchers then used a virus engineered to carry working copies of the WWOX gene into the three cell lines.

After five days, the researchers found that cells having an active WWOX gene died off. The cells self-destructed through a natural process known as programmed cell death, or apoptosis. The lung-cancer cells that lacked the WWOX gene, on the other hand, continued growing and increased in number nearly five- or six-fold.

Next, the researchers took some of the lung-cancer cells to which they’d added working copies of the WWOX gene, and they transplanted the cells into mice; a second group of control mice received lung-cancer cells without the WWOX gene.

After 28 days, the mice that received tumor cells with no WWOX gene had developed tumors. Of the mice that received tumor cells with the gene, 60 percent in one group and 80 percent in another group showed no tumors.

“Our study is a proof of principle,” Huebner says. “It shows that if the WWOX gene can be delivered into tumor cells, it can kill them.

“We also showed that if a silenced WWOX gene is present and can be turned back on, that too will kill tumor cells,” adds first author and postdoctoral researcher Muller Fabbri.

“We don’t believe that using WWOX as a therapy will necessarily eradicate tumors, Fabbri says, “but we do believe that this kind of gene therapy might be useful when used in combination with chemotherapy and other therapies.”

Funding from the National Cancer Institute, the Commonwealth of Pennsylvania Tobacco Settlement Fund and the U.S. Department of Defense Breast Cancer Program supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>