Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Restoring silenced suppressor gene kills lung-cancer cells

17.10.2005


A new study suggests that restoring a gene often silenced in lung cancer causes the cells to self-destruct. The findings could lead to a new strategy for treating the disease.



The research focused on a gene known as WWOX, which is lost or silenced in a large majority of lung cancers, and in cancers of the breast, ovary, prostate, bladder, esophagus and pancreas. The work was led by scientists at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute.

The study showed that both in the laboratory and in animal experiments, restoring the missing or silenced WWOX gene can slow or stop the cells’ growth.


The study also showed that the reactivated gene is highly effective in stopping the growth of human lung tumors that have been transplanted into mice.

The findings are published online in the Oct. 13 Early Edition of the Proceedings of the National Academy of Sciences.

The American Cancer Society expects more than 172,500 Americans to develop lung cancer in 2005, and more than 163,500 people to die of the disease, making it the most common cause of cancer death in the U.S.

“Our findings show that restoring the WWOX gene in lung-cancer cells that don’t express it will kill that lung-cancer cell,” says coauthor Kay Huebner, professor of molecular virology, immunology and medical genetics and a researcher with the OSU Comprehensive Cancer Center .

“This suggests that if this gene could be delivered to, or reactivated in, the tumor cells of lung-cancer cases that are deficient in this gene, it should have a therapeutic effect.”

WWOX is a tumor suppressor gene. Tumor suppressor genes safeguard the body by triggering the death of cells that have sustained serious DNA damage before the cells become cancerous. The loss or silencing of tumor suppressor genes is a fundamental cause of tumor development.

The WWOX protein is missing in cells making up many lung tumors, and in 62 percent of cases, the gene is turned off by a chemical process known as methylation.

“There is nothing wrong with those genes except that they are silenced by methylation,” Huebner says. “Experimental drugs are now being tested that cause demethylation and may reactivate WWOX and other genes.”

For this study, Huebner and her colleagues used three different lines of laboratory-grown lung-cancer cells that were missing WWOX protein. The researchers then used a virus engineered to carry working copies of the WWOX gene into the three cell lines.

After five days, the researchers found that cells having an active WWOX gene died off. The cells self-destructed through a natural process known as programmed cell death, or apoptosis. The lung-cancer cells that lacked the WWOX gene, on the other hand, continued growing and increased in number nearly five- or six-fold.

Next, the researchers took some of the lung-cancer cells to which they’d added working copies of the WWOX gene, and they transplanted the cells into mice; a second group of control mice received lung-cancer cells without the WWOX gene.

After 28 days, the mice that received tumor cells with no WWOX gene had developed tumors. Of the mice that received tumor cells with the gene, 60 percent in one group and 80 percent in another group showed no tumors.

“Our study is a proof of principle,” Huebner says. “It shows that if the WWOX gene can be delivered into tumor cells, it can kill them.

“We also showed that if a silenced WWOX gene is present and can be turned back on, that too will kill tumor cells,” adds first author and postdoctoral researcher Muller Fabbri.

“We don’t believe that using WWOX as a therapy will necessarily eradicate tumors, Fabbri says, “but we do believe that this kind of gene therapy might be useful when used in combination with chemotherapy and other therapies.”

Funding from the National Cancer Institute, the Commonwealth of Pennsylvania Tobacco Settlement Fund and the U.S. Department of Defense Breast Cancer Program supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>