Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Restoring silenced suppressor gene kills lung-cancer cells

17.10.2005


A new study suggests that restoring a gene often silenced in lung cancer causes the cells to self-destruct. The findings could lead to a new strategy for treating the disease.



The research focused on a gene known as WWOX, which is lost or silenced in a large majority of lung cancers, and in cancers of the breast, ovary, prostate, bladder, esophagus and pancreas. The work was led by scientists at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute.

The study showed that both in the laboratory and in animal experiments, restoring the missing or silenced WWOX gene can slow or stop the cells’ growth.


The study also showed that the reactivated gene is highly effective in stopping the growth of human lung tumors that have been transplanted into mice.

The findings are published online in the Oct. 13 Early Edition of the Proceedings of the National Academy of Sciences.

The American Cancer Society expects more than 172,500 Americans to develop lung cancer in 2005, and more than 163,500 people to die of the disease, making it the most common cause of cancer death in the U.S.

“Our findings show that restoring the WWOX gene in lung-cancer cells that don’t express it will kill that lung-cancer cell,” says coauthor Kay Huebner, professor of molecular virology, immunology and medical genetics and a researcher with the OSU Comprehensive Cancer Center .

“This suggests that if this gene could be delivered to, or reactivated in, the tumor cells of lung-cancer cases that are deficient in this gene, it should have a therapeutic effect.”

WWOX is a tumor suppressor gene. Tumor suppressor genes safeguard the body by triggering the death of cells that have sustained serious DNA damage before the cells become cancerous. The loss or silencing of tumor suppressor genes is a fundamental cause of tumor development.

The WWOX protein is missing in cells making up many lung tumors, and in 62 percent of cases, the gene is turned off by a chemical process known as methylation.

“There is nothing wrong with those genes except that they are silenced by methylation,” Huebner says. “Experimental drugs are now being tested that cause demethylation and may reactivate WWOX and other genes.”

For this study, Huebner and her colleagues used three different lines of laboratory-grown lung-cancer cells that were missing WWOX protein. The researchers then used a virus engineered to carry working copies of the WWOX gene into the three cell lines.

After five days, the researchers found that cells having an active WWOX gene died off. The cells self-destructed through a natural process known as programmed cell death, or apoptosis. The lung-cancer cells that lacked the WWOX gene, on the other hand, continued growing and increased in number nearly five- or six-fold.

Next, the researchers took some of the lung-cancer cells to which they’d added working copies of the WWOX gene, and they transplanted the cells into mice; a second group of control mice received lung-cancer cells without the WWOX gene.

After 28 days, the mice that received tumor cells with no WWOX gene had developed tumors. Of the mice that received tumor cells with the gene, 60 percent in one group and 80 percent in another group showed no tumors.

“Our study is a proof of principle,” Huebner says. “It shows that if the WWOX gene can be delivered into tumor cells, it can kill them.

“We also showed that if a silenced WWOX gene is present and can be turned back on, that too will kill tumor cells,” adds first author and postdoctoral researcher Muller Fabbri.

“We don’t believe that using WWOX as a therapy will necessarily eradicate tumors, Fabbri says, “but we do believe that this kind of gene therapy might be useful when used in combination with chemotherapy and other therapies.”

Funding from the National Cancer Institute, the Commonwealth of Pennsylvania Tobacco Settlement Fund and the U.S. Department of Defense Breast Cancer Program supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water world

20.11.2017 | Life Sciences

Less is more to produce top-notch 2D materials

20.11.2017 | Materials Sciences

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>