Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cytori demonstrates adipose stem cells improve cardiac function in preclinical heart attack model

17.10.2005


First preclinical report of autologous stem cells harvested and administered the day of heart attack



Cytori Therapeutics, Inc. (Frankfurt: XMP), today presented results demonstrating that adipose stem cells improved cardiac function following a severe heart attack in a porcine study. This is the first preclinical study in which the injected cells were autologous, meaning they came from the animals’ own tissue, were not cultured, so that they did not undergo multiple cell divisions to achieve a target dose of cells, and were harvested and administered on the day of the heart attack. The results of the study, conducted in collaboration with Tulane University, were presented at the 17th annual Transcatheter Cardiovascular Therapeutics 2005 conference in Washington, D.C. (abstract no. 158).

In this randomized study, 17 animals received either injections of their own adipose stem and regenerative cells (treated) or a saline injection (control) via catheter into the artery at the site of the heart attack. After eight weeks, there was a statistically significant reduction in the perfusion defect, which is the area of the heart deprived of oxygen as a result of the infarct. A corresponding benefit was observed by the improvement in ejection fraction, a common measure of the heart’s pumping efficiency.


"Our study was unique in that the animals received an injection of autologous cells that were not cultured and administered immediately following a heart attack," said Marc H. Hedrick, M.D., President for Cytori Therapeutics. "Additionally, it shows that a sufficient number of cells could be accessed from adipose tissue in real-time to achieve a therapeutic effect, which closely approximates a clinical setting where timely delivery may be critical. These data confirm our previous results and will serve as an important component of our forthcoming application to initiate European clinical studies next year."

Adipose tissue, also known as fat, is an abundant source of stem cells and other regenerative cells that can contribute to the repair and healing of damaged tissue. These cells have been shown to reduce the extent of a heart attack and promote restoration of heart function by a variety of mechanisms, including promotion of blood vessel growth, and differentiate into cardiac muscle tissue.

Tom Baker | EurekAlert!
Further information:
http://www.cytortitx.com

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>