Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cytori demonstrates adipose stem cells improve cardiac function in preclinical heart attack model

17.10.2005


First preclinical report of autologous stem cells harvested and administered the day of heart attack



Cytori Therapeutics, Inc. (Frankfurt: XMP), today presented results demonstrating that adipose stem cells improved cardiac function following a severe heart attack in a porcine study. This is the first preclinical study in which the injected cells were autologous, meaning they came from the animals’ own tissue, were not cultured, so that they did not undergo multiple cell divisions to achieve a target dose of cells, and were harvested and administered on the day of the heart attack. The results of the study, conducted in collaboration with Tulane University, were presented at the 17th annual Transcatheter Cardiovascular Therapeutics 2005 conference in Washington, D.C. (abstract no. 158).

In this randomized study, 17 animals received either injections of their own adipose stem and regenerative cells (treated) or a saline injection (control) via catheter into the artery at the site of the heart attack. After eight weeks, there was a statistically significant reduction in the perfusion defect, which is the area of the heart deprived of oxygen as a result of the infarct. A corresponding benefit was observed by the improvement in ejection fraction, a common measure of the heart’s pumping efficiency.


"Our study was unique in that the animals received an injection of autologous cells that were not cultured and administered immediately following a heart attack," said Marc H. Hedrick, M.D., President for Cytori Therapeutics. "Additionally, it shows that a sufficient number of cells could be accessed from adipose tissue in real-time to achieve a therapeutic effect, which closely approximates a clinical setting where timely delivery may be critical. These data confirm our previous results and will serve as an important component of our forthcoming application to initiate European clinical studies next year."

Adipose tissue, also known as fat, is an abundant source of stem cells and other regenerative cells that can contribute to the repair and healing of damaged tissue. These cells have been shown to reduce the extent of a heart attack and promote restoration of heart function by a variety of mechanisms, including promotion of blood vessel growth, and differentiate into cardiac muscle tissue.

Tom Baker | EurekAlert!
Further information:
http://www.cytortitx.com

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>