Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy may protect normal tissues during radiation retreatment for lung cancer

17.10.2005


Gene therapy could be used as an agent to protect normal tissues, including the esophagus and lung, from damage during a second administration of radiation therapy for non-small cell lung cancer, according to an animal study presented today by University of Pittsburgh researchers at the 47th Annual Meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO) in Denver.



"A major challenge in treating lung tumors with radiation is the toxicity of radiation to healthy tissue," said Joel S. Greenberger, M.D., professor, University of Pittsburgh School of Medicine. "This can result in major quality-of-life issues for lung cancer patients receiving radiation therapy for their diseases. In previous studies, we demonstrated that gene therapy may protect healthy tissues from damage prior to an initial course of radiation therapy. In this study, we found that gene therapy also can protect the same healthy tissue during retreatment with radiation." Dr. Greenberger explained that a related study shows the effectiveness of aerosol delivery of this therapy by an inhalation nebulizer making it clinically feasible.

In the study, animal models were used to test the protective effects of manganese superoxide dismutase plasmid liposome (MnSOD-PL) gene therapy during exposure to radiation. One group of mice received an intratracheal injection of MnSOD-PL 24 hours before a course of 14 Gy irradiation, while a second group received 14 Gy irradiation alone. The mice were observed for six months for any toxic pulmonary effects and then subdivided into two more groups. One of these groups was exposed to a second lung irradiation of 10 Gy without MnSOD-PL and the other received an injection of MnSOD-PL 24 hours prior to radiation exposure.


The researchers found that in mice that received the initial 14 Gy dose there was 50 percent survival at 180 days (due to lung toxicity) compared to 87.5 percent survival during the same length of time for mice that were injected with MnSOD-PL prior to irradiation. Mice that received MnSOD-PL before both the 14 Gy dose as well as the subsequent 10 Gy dose had the best survival rate overall. Mice treated with MnSOD-PL before the first dose of radiation had a survival rate of 31.6 percent, while mice receiving the treatment before both courses of radiation had a survival rate of 47.6 percent.

"Administration of this type of gene therapy appeared to prevent the damaging effects of radiation, even when the radiation was re-administered after six months," said Dr. Greenberger. "Future studies will tell us whether this therapy can improve the quality of life for lung cancer patients and help us more effectively treat lung cancer without the damaging side effects."

Lung cancer is the leading cause of cancer-related death in men and women. In 2005, more than 170,000 new cases of lung cancer will be diagnosed. Side effects from radiation therapy for lung cancer can include fatigue, skin changes, swelling of the esophagus, hair loss in the treated area, dry cough caused by swelling of the lung tissue and sore throat.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>