Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy may protect normal tissues during radiation retreatment for lung cancer

17.10.2005


Gene therapy could be used as an agent to protect normal tissues, including the esophagus and lung, from damage during a second administration of radiation therapy for non-small cell lung cancer, according to an animal study presented today by University of Pittsburgh researchers at the 47th Annual Meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO) in Denver.



"A major challenge in treating lung tumors with radiation is the toxicity of radiation to healthy tissue," said Joel S. Greenberger, M.D., professor, University of Pittsburgh School of Medicine. "This can result in major quality-of-life issues for lung cancer patients receiving radiation therapy for their diseases. In previous studies, we demonstrated that gene therapy may protect healthy tissues from damage prior to an initial course of radiation therapy. In this study, we found that gene therapy also can protect the same healthy tissue during retreatment with radiation." Dr. Greenberger explained that a related study shows the effectiveness of aerosol delivery of this therapy by an inhalation nebulizer making it clinically feasible.

In the study, animal models were used to test the protective effects of manganese superoxide dismutase plasmid liposome (MnSOD-PL) gene therapy during exposure to radiation. One group of mice received an intratracheal injection of MnSOD-PL 24 hours before a course of 14 Gy irradiation, while a second group received 14 Gy irradiation alone. The mice were observed for six months for any toxic pulmonary effects and then subdivided into two more groups. One of these groups was exposed to a second lung irradiation of 10 Gy without MnSOD-PL and the other received an injection of MnSOD-PL 24 hours prior to radiation exposure.


The researchers found that in mice that received the initial 14 Gy dose there was 50 percent survival at 180 days (due to lung toxicity) compared to 87.5 percent survival during the same length of time for mice that were injected with MnSOD-PL prior to irradiation. Mice that received MnSOD-PL before both the 14 Gy dose as well as the subsequent 10 Gy dose had the best survival rate overall. Mice treated with MnSOD-PL before the first dose of radiation had a survival rate of 31.6 percent, while mice receiving the treatment before both courses of radiation had a survival rate of 47.6 percent.

"Administration of this type of gene therapy appeared to prevent the damaging effects of radiation, even when the radiation was re-administered after six months," said Dr. Greenberger. "Future studies will tell us whether this therapy can improve the quality of life for lung cancer patients and help us more effectively treat lung cancer without the damaging side effects."

Lung cancer is the leading cause of cancer-related death in men and women. In 2005, more than 170,000 new cases of lung cancer will be diagnosed. Side effects from radiation therapy for lung cancer can include fatigue, skin changes, swelling of the esophagus, hair loss in the treated area, dry cough caused by swelling of the lung tissue and sore throat.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>