Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme complex thought to promote cancer development can also help prevent it

14.10.2005


In a case of basic science detective work, researchers at The University of Texas M. D. Anderson Cancer Center have solved the puzzle of the "inconsistent biomarker" and, in the process, may have discovered an agent that can suppress cancer development.



In the Oct. 14 issue of Science, researchers report that the biomarker in question - an enzyme known as EZH2 - leads a duplicitous life. In its "native" state, the enzyme acts as a suppressor for cancer cell growth that works to inhibit cancer development. But when it is phosphorylated (when a phosphate group is added to the molecule), it turns vicious and acts to promote oncogenesis.

The researchers found the two forms of EZH2 after they identified the "switch" that leads to its phosphorylation - the well-known culprit Akt, an enzyme that has already been associated with cancer development.


The findings explain not only why high levels of EZH2 (when bound to its partner proteins, such as EED) have been shown to identify people who have an aggressive, metastatic form of breast or prostate cancer, but also why elevated levels of EED appear to offer protective effects against virulent lymphoma.

"This has become a big riddle to cancer researchers who want to be able to use EZH2 as a marker upon which to base aggressive treatment," says the study’s lead author, Mien-Chie Hung, Ph.D., chair of the Department of Molecular and Cellular Oncology. "We now know there are two different forms of EZH2. The phosphorylated one enhances oncogenesis, whereas the nonphosphorylated EZH2 works to inhibit cell growth."

Their findings are important for a number of different reasons, says Hung.

The first is that phosphorylated EZH2 may provide a much better "biomarker" of aggressive cancer than "total" EZH2 (the sum of both kinds of EZH2 that has been measured in previous biomarker studies) since it is the one with oncogenic properties and appears to help cancer cells invade nearby tissue, he says. "We need more study to determine this, but my prediction is that this form may be a better marker because it enhances the growth of cancer cells and tumors," he says.

The second is that the researchers developed a "mutant" protein that stops EZH2 from being phosphorylated, and they say this molecule might provide the basis for either a small-molecule drug or a gene therapy treatment, Hung says. Indeed, in their study, the research team used the agent to reduce tumor growth in a mouse model of human breast cancer. "We believe that identifying small molecules that could switch between the phosphorylated and nonphosphorylated EZH2 form may provide a screening strategy for cancer treatment," he says.

Finally, the study demonstrates the power of researching what is known as "epigenetics" molecular mechanisms in cancer - the notion that genes and their protein products do not have to be mutated for the disease to develop. In this field of study, researchers look at how beneficial genes/proteins may be silenced by molecules that help handle DNA.

For example, one area of active investigation is the power that histones exert on gene expression. Histones are nature’s way of physically controlling unwieldy "naked" DNA by compacting it. But scientists now know that histones themselves can be modified by phosphorylation, as well as through another process known as methylation, in which one atom on a biological molecule is replaced by a different set of chemicals. Histone methylation, in particular, is now regarded as a strong modifier of genetic activity, and can work to either activate or silence gene expression.

The M. D. Anderson researchers conclude that Akt regulates the ability of EZH2 to silence genes that are needed to protect against cancer development. When Akt is activated, it phosphorylates EZH2, making it break free from a particular histone known as H3. If it is not bound to H3, EZH2 cannot methylate H3, thus these silenced genes (which are believed to be oncogenes) are re-expressed. If Akt is not activated, it does not phosphorylate EZH2, and this enzyme remains bound to and methylates H3, allowing it to silence gene expression.

"Our results imply that Akt regulates the methylation activity through phosphorylation of EZH2, which may contribute to oncogenesis," Hung says.

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>