Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Enzyme complex thought to promote cancer development can also help prevent it


In a case of basic science detective work, researchers at The University of Texas M. D. Anderson Cancer Center have solved the puzzle of the "inconsistent biomarker" and, in the process, may have discovered an agent that can suppress cancer development.

In the Oct. 14 issue of Science, researchers report that the biomarker in question - an enzyme known as EZH2 - leads a duplicitous life. In its "native" state, the enzyme acts as a suppressor for cancer cell growth that works to inhibit cancer development. But when it is phosphorylated (when a phosphate group is added to the molecule), it turns vicious and acts to promote oncogenesis.

The researchers found the two forms of EZH2 after they identified the "switch" that leads to its phosphorylation - the well-known culprit Akt, an enzyme that has already been associated with cancer development.

The findings explain not only why high levels of EZH2 (when bound to its partner proteins, such as EED) have been shown to identify people who have an aggressive, metastatic form of breast or prostate cancer, but also why elevated levels of EED appear to offer protective effects against virulent lymphoma.

"This has become a big riddle to cancer researchers who want to be able to use EZH2 as a marker upon which to base aggressive treatment," says the study’s lead author, Mien-Chie Hung, Ph.D., chair of the Department of Molecular and Cellular Oncology. "We now know there are two different forms of EZH2. The phosphorylated one enhances oncogenesis, whereas the nonphosphorylated EZH2 works to inhibit cell growth."

Their findings are important for a number of different reasons, says Hung.

The first is that phosphorylated EZH2 may provide a much better "biomarker" of aggressive cancer than "total" EZH2 (the sum of both kinds of EZH2 that has been measured in previous biomarker studies) since it is the one with oncogenic properties and appears to help cancer cells invade nearby tissue, he says. "We need more study to determine this, but my prediction is that this form may be a better marker because it enhances the growth of cancer cells and tumors," he says.

The second is that the researchers developed a "mutant" protein that stops EZH2 from being phosphorylated, and they say this molecule might provide the basis for either a small-molecule drug or a gene therapy treatment, Hung says. Indeed, in their study, the research team used the agent to reduce tumor growth in a mouse model of human breast cancer. "We believe that identifying small molecules that could switch between the phosphorylated and nonphosphorylated EZH2 form may provide a screening strategy for cancer treatment," he says.

Finally, the study demonstrates the power of researching what is known as "epigenetics" molecular mechanisms in cancer - the notion that genes and their protein products do not have to be mutated for the disease to develop. In this field of study, researchers look at how beneficial genes/proteins may be silenced by molecules that help handle DNA.

For example, one area of active investigation is the power that histones exert on gene expression. Histones are nature’s way of physically controlling unwieldy "naked" DNA by compacting it. But scientists now know that histones themselves can be modified by phosphorylation, as well as through another process known as methylation, in which one atom on a biological molecule is replaced by a different set of chemicals. Histone methylation, in particular, is now regarded as a strong modifier of genetic activity, and can work to either activate or silence gene expression.

The M. D. Anderson researchers conclude that Akt regulates the ability of EZH2 to silence genes that are needed to protect against cancer development. When Akt is activated, it phosphorylates EZH2, making it break free from a particular histone known as H3. If it is not bound to H3, EZH2 cannot methylate H3, thus these silenced genes (which are believed to be oncogenes) are re-expressed. If Akt is not activated, it does not phosphorylate EZH2, and this enzyme remains bound to and methylates H3, allowing it to silence gene expression.

"Our results imply that Akt regulates the methylation activity through phosphorylation of EZH2, which may contribute to oncogenesis," Hung says.

Nancy Jensen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>