Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seaweed yields new compounds with pharmaceutical potential

14.10.2005


Researchers have discovered 10 new molecular structures with pharmaceutical potential in a species of red seaweed that lives in the shallow coral reef along the coastline of Fiji in the south Pacific Ocean.



Some of these natural compounds showed the potential to kill cancer cells, bacteria and the HIV virus, according to research at the Georgia Institute of Technology. In fact, two of them exhibit anti-bacterial activity towards antibiotic-resistant Staphylococcus aureus at concentrations worth pursuing, though researchers don’t know yet whether the concentrations of the compounds required to kill the bacterium would be harmful to humans.

The compound that was isolated in the greatest abundance -- named bromophycolide A by the researchers -- killed human tumor cells by inducing programmed cell death (called apoptosis), a mechanism that is promising for development of new anti-cancer drugs, researchers noted.


The findings on three of these compounds – called diterpene-benzoate natural products -- are reported in the Oct. 12 online issue of the American Chemical Society journal Organic Letters. Information on the other compounds will be published later. The research, which is part of an environmental conservation, economic development and drug discovery project in Fiji, was primarily funded by the Fogarty International Center at the National Institutes of Health. Georgia Tech Professor of Biology Mark Hay leads the project, which also aims to benefit the Fijian government and villages, which own their local natural resources and will benefit monetarily if these natural resources become marketable drugs.

"We’re only at the test-tube level so far," explained Julia Kubanek, a Georgia Tech assistant professor of biology, chemistry and biochemistry, who is the lead author on the paper. "The next step is to discover how these compounds work and then to study them in a more complex model system."

The U.S. pharmaceutical company Bristol Myers Squibb is collaborating with Georgia Tech researchers to determine how some of these 10 compounds kill cancer cells. Meanwhile, Georgia Tech has filed a provisional patent to protect the discovery of these structures and small variations of them.

"These molecular structures are curious in the way carbon atoms are attached," Kubanek said. "It’s very unusual. They represent a new category of organic molecules. It’s exciting as a biochemist to observe that living organisms have evolved the ability to synthesize such unique and exotic structures compared to other molecules typically produced by seaweeds."

The source of these new molecular structures is a red seaweed (Callophycus serratus) collected from four Fijian sites. Among the sites, researchers found variations in the molecular structures produced by the species.

"There are chemical differences among populations of this seaweed species, even though two of the sites where it was collected are only about 2 kilometers apart," Kubanek noted. "… This shows us there are small, but valuable differences within species, and this genetic biodiversity is important to protect as a resource for the future." Researchers have been analyzing extracts from about 200 marine plant and invertebrate animal samples they collected from the Fijian coral reef in June 2004 with the permission of the Fijian government and local resource owners.

"Marine organisms make molecules for their own purposes that we might co-opt for our own use as pharmaceutical agents," Kubanek explained. "The organisms’ purposes include defense against predators, the ability to fight diseases, and the production of chemical cues, such as those used for sex recognition."

Hay, Kubanek, and their colleagues collected baseball-sized samples of reef species that exhibit unusual growth and/or behavioral phenomena. Among their collection were soft corals, marine sponges, slugs, and green, red and brown seaweeds.

In the lab, researchers extracted these organisms using mixtures of organic liquids, which opened up the cells and dissolved the natural products. The organic liquids were then removed from the extract by evaporation, and small quantities of each extract were tested against a battery of pharmaceutical drug targets, including malarial parasite, tuberculosis-causing bacteria, and several cancers.

Typically, these tests involve exposing live, disease-causing cells -- parasites, bacteria or cancer cells -- to an extract and then assessing cell death compared to cells that were not exposed to extracts. Georgia Tech scientists then prioritized further study of extracts that had strong effects on these disease-causing cells.

The Callophycus red seaweed was one of the first five species that researchers investigated to identify the compounds within extracts that caused strong effects against disease-causing cells. Anne Prusak, a former Georgia Tech student and research technician, separated the new molecules from other components of the extract by a process called chromatography, which takes advantage of the different chemical characteristics of compounds.

Finally, researchers used X-ray crystallography (work done at Emory University in Atlanta), nuclear magnetic resonance spectroscopy and mass spectral analyses to determine how carbon, oxygen, bromine and hydrogen atoms connected to make up the molecular structures of the 10 new natural products.

Much research is left to do before any of these compounds are used to formulate a drug available on the market, Kubanek said. It typically takes at least a decade from the discovery of a compound to the marketing of a new drug. If that does happen in this case, Fijian villagers and the Fijian government would benefit financially from the discovery because of an agreement that is already in place, she added. Because of the long timeframe in getting a drug to market, the project in Fiji provides other immediate conservation and economic development benefits to villagers and the government.

Jane M. Sanders | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>