Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers build DNA ’nanotowers’ with enzyme tools

13.10.2005


Duke engineers have added a new construction tool to their bio-nanofabrication toolbox. Using an enzyme called TdTase, engineers can vertically extend short DNA chains attached to nanometer-sized gold plates. This advance adds new capability to the field of bio-nanomanufacturing.



"The process works like stacking Legos to make a tower and is an important step toward creating functional nanostructures out of biological materials," said Ashutosh Chilkoti, associate professor of biomedical engineering at Duke’s Pratt School of Engineering.

The prefix nano means a billionth and refers to the billionth-of-a-meter scale of such structures.


Last year, Chilkoti and his team demonstrated an enzyme-driven process to "carve" nanoscale troughs into a field of DNA strands. By combining this technique with the new method of adding vertical length to the DNA strands, they can now create surfaces with three-dimensional topography.

"The development of bio-nanotechnological tools and fabrication strategies, as demonstrated here, will ultimately allow the automated study of biology at the molecular scale and will drive our discovery and understanding of the basic molecular machinery that defines life," said Stefan Zauscher, assistant professor of mechanical engineering and materials science.

This research was published online on Sept. 27, 2005, and will be published in the print Journal of the American Chemical Society (JACS). The article is available at: http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/ja052491z. It is funded by the National Science Foundation.

The authors include Chilkoti, Zauscher, postdoctoral fellow Dominic Chow and graduate student Woo-Kyung Lee.

"Compared with semi-conductor fabrication, bio-nanomanufacturing is in the stone age. There are few tools for working with bio building blocks that work well in water, the natural milieu of biomolecules," Chilkoti said. "And it makes little sense to blindly copy the semi-conductor industry because their techniques don’t work with water-based materials," he said. "So Duke is creating the tools that will make bio-manufacturing possible at an industrial scale."

The team starts with a forest of short DNA strands that cover nanoscale patches of gold, lithographed onto a silicon substrate. The researchers then submerge the substrate in a solution that contains the TdTase (terminal deoxynucleotidyl transferase) enzyme, a cobalt catalyst and the molecular building blocks, called nucleotides, of DNA chains.

Over an hour, the TdTase enzyme grabs the free-floating nucleotides and builds nanoscale "towers" above the surface by extending each DNA strand, increasing its height a hundredfold. In addition, the process works at room temperature in an incubator that maintains humidity, Chilkoti said.

"Working with water-based biological materials requires a humidity-controlled environment, but it is a plus for industry that this surface-initiated polymerization works at room temperature. No special heating or cooling is needed," he said.

"The process is like a surface-initiated polymerization reaction in polymer chemistry, with the important difference that it uses biological materials and is enzymatically catalyzed," adds Zauscher. "Developing the tools to harness biological reactions on the molecular scale opens a whole new arena for materials syntheses."

Biologists have known about the TdTase enzyme for decades, but it has only been used for a few specialized tasks in molecular biology, Chilkoti said. His group was interested in the enzyme because it doesn’t just copy DNA, it builds DNA.

"Biologists call the TdTase enzyme promiscuous because it just builds and builds using whatever is available. We now recognize the enzyme offers us fabulous flexibility for bioengineering. We can use it with any sequence of DNA we need," Chilkoti said.

The Duke team sees enzymes as a rich source of tools for bio-nanomanufacturing. "Enzymes are the body’s production factories, so it makes sense to copy nature’s tools and use them in much the same way. We are trying to bring as many different enzymes as possible to bear on the biomanufacturing problem," Chilkoti said. "The new fabrication strategy allows exquisite control over the structure and composition of the DNA nanostructures, a prospect that offers interesting possibilities for bionanofabrication as it allows specific molecular adapters to be encoded along the vertical direction of the DNA chains," said Zauscher.

Chilkoti said the next step towards bio-nanofabrication is to create a little crane to pick up, move and place biological molecules in precise locations on three-dimensional DNA surfaces.

"When we can place molecules in the right configuration, then we can get them to function. At that point, we can design and create biological machines that accomplish something," he said.

Deborah Hill | EurekAlert!
Further information:
http://www.duke.edu
http://www.cbimms.duke.edu/

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>