Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineers build DNA ’nanotowers’ with enzyme tools


Duke engineers have added a new construction tool to their bio-nanofabrication toolbox. Using an enzyme called TdTase, engineers can vertically extend short DNA chains attached to nanometer-sized gold plates. This advance adds new capability to the field of bio-nanomanufacturing.

"The process works like stacking Legos to make a tower and is an important step toward creating functional nanostructures out of biological materials," said Ashutosh Chilkoti, associate professor of biomedical engineering at Duke’s Pratt School of Engineering.

The prefix nano means a billionth and refers to the billionth-of-a-meter scale of such structures.

Last year, Chilkoti and his team demonstrated an enzyme-driven process to "carve" nanoscale troughs into a field of DNA strands. By combining this technique with the new method of adding vertical length to the DNA strands, they can now create surfaces with three-dimensional topography.

"The development of bio-nanotechnological tools and fabrication strategies, as demonstrated here, will ultimately allow the automated study of biology at the molecular scale and will drive our discovery and understanding of the basic molecular machinery that defines life," said Stefan Zauscher, assistant professor of mechanical engineering and materials science.

This research was published online on Sept. 27, 2005, and will be published in the print Journal of the American Chemical Society (JACS). The article is available at: It is funded by the National Science Foundation.

The authors include Chilkoti, Zauscher, postdoctoral fellow Dominic Chow and graduate student Woo-Kyung Lee.

"Compared with semi-conductor fabrication, bio-nanomanufacturing is in the stone age. There are few tools for working with bio building blocks that work well in water, the natural milieu of biomolecules," Chilkoti said. "And it makes little sense to blindly copy the semi-conductor industry because their techniques don’t work with water-based materials," he said. "So Duke is creating the tools that will make bio-manufacturing possible at an industrial scale."

The team starts with a forest of short DNA strands that cover nanoscale patches of gold, lithographed onto a silicon substrate. The researchers then submerge the substrate in a solution that contains the TdTase (terminal deoxynucleotidyl transferase) enzyme, a cobalt catalyst and the molecular building blocks, called nucleotides, of DNA chains.

Over an hour, the TdTase enzyme grabs the free-floating nucleotides and builds nanoscale "towers" above the surface by extending each DNA strand, increasing its height a hundredfold. In addition, the process works at room temperature in an incubator that maintains humidity, Chilkoti said.

"Working with water-based biological materials requires a humidity-controlled environment, but it is a plus for industry that this surface-initiated polymerization works at room temperature. No special heating or cooling is needed," he said.

"The process is like a surface-initiated polymerization reaction in polymer chemistry, with the important difference that it uses biological materials and is enzymatically catalyzed," adds Zauscher. "Developing the tools to harness biological reactions on the molecular scale opens a whole new arena for materials syntheses."

Biologists have known about the TdTase enzyme for decades, but it has only been used for a few specialized tasks in molecular biology, Chilkoti said. His group was interested in the enzyme because it doesn’t just copy DNA, it builds DNA.

"Biologists call the TdTase enzyme promiscuous because it just builds and builds using whatever is available. We now recognize the enzyme offers us fabulous flexibility for bioengineering. We can use it with any sequence of DNA we need," Chilkoti said.

The Duke team sees enzymes as a rich source of tools for bio-nanomanufacturing. "Enzymes are the body’s production factories, so it makes sense to copy nature’s tools and use them in much the same way. We are trying to bring as many different enzymes as possible to bear on the biomanufacturing problem," Chilkoti said. "The new fabrication strategy allows exquisite control over the structure and composition of the DNA nanostructures, a prospect that offers interesting possibilities for bionanofabrication as it allows specific molecular adapters to be encoded along the vertical direction of the DNA chains," said Zauscher.

Chilkoti said the next step towards bio-nanofabrication is to create a little crane to pick up, move and place biological molecules in precise locations on three-dimensional DNA surfaces.

"When we can place molecules in the right configuration, then we can get them to function. At that point, we can design and create biological machines that accomplish something," he said.

Deborah Hill | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation

19.03.2018 | Information Technology

Tiny implants for cells are functional in vivo

19.03.2018 | Interdisciplinary Research

Science & Research
Overview of more VideoLinks >>>