Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FSU biologists describe key role of signal-transcribing gene during cell cycle

13.10.2005


Study in Oct. 1 ’Development’ shows when, where Alzheimer’s, some cancers and genetic ills begin



Biologists at Florida State University have uncovered the pivotal role of a gene called "Cut" that acts as a sort of middleman in cell-to-cell communication.
A DNA-binding protein, Cut interprets and transcribes the developmental signals sent through the "Notch" gene, which regulates a layer of epithelial cells as they replicate and divide. But when Cut garbles those signals the result is uncontrolled cell proliferation, sometimes with dire genetic and health consequences.

Results of the study are described in the Oct. 1 edition of the journal Development.



Led by FSU assistant professor Wu-Min Deng, the research has provided a more precise understanding of just how and where molecular mechanisms that drive cell cycle behavior and fate go wrong along the critical Notch pathway –– a communication channel already associated with the genesis of several genetic and neuromuscular diseases; the most common complex congenital heart disorder; and later life ills such as Alzheimer’s, breast and lung cancer, and leukemia.

"We now know that the transcription factor Cut is the key there," said Deng.

Assisted by FSU graduate student and co-author Jianjun Sun, Deng conducted the study using the powerful Drosophila (fruit fly) genetic model. Over the course of a year, they tracked the cell-to-cell communication in Drosophila egg chambers that control cell proliferation.

"We believe the specific cell-to-cell signaling and dysfunction observed in fruit flies is applicable to mammals, which also possess genes Notch and Cut," said Deng.

The researchers traced the journey of transmissions originating from Notch –– which carries information gleaned from other cells –– following the signals down the Notch pathway as Cut linked them to the control of cell proliferation in the egg chambers, which they observed at different stages.

When Cut accurately transcribed the Notch signals, the cells progressed appropriately from the conventional mitosis (replication and division) to the specialized endocycle, where cells cease division but still replicate their DNA.

But if Notch-to-Cut communication and Cut transcription were dysfunctional, so, too, was the cell cycle. In that case, the essential switch from mitosis to the endocycle failed, resulting in unregulated growth.

According to Deng, knowing exactly how and where in the Notch pathway early developmental signals get crossed may be crucial to future fixes, since mutations to the molecular mechanisms there are linked in humans to specific congenital and later life disorders.

"With further study, these findings may aid the development of interventions that target certain diseases precisely where and when they begin at the molecular level," he said.

Deng’s focus on Cut since joining the biological sciences faculty at FSU in 2004 followed a Notch study he also co-authored, which appeared in a 2001 issue of Development.

Wu-Min Deng | EurekAlert!
Further information:
http://www.bio.fsu.edu

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>