Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FSU biologists describe key role of signal-transcribing gene during cell cycle

13.10.2005


Study in Oct. 1 ’Development’ shows when, where Alzheimer’s, some cancers and genetic ills begin



Biologists at Florida State University have uncovered the pivotal role of a gene called "Cut" that acts as a sort of middleman in cell-to-cell communication.
A DNA-binding protein, Cut interprets and transcribes the developmental signals sent through the "Notch" gene, which regulates a layer of epithelial cells as they replicate and divide. But when Cut garbles those signals the result is uncontrolled cell proliferation, sometimes with dire genetic and health consequences.

Results of the study are described in the Oct. 1 edition of the journal Development.



Led by FSU assistant professor Wu-Min Deng, the research has provided a more precise understanding of just how and where molecular mechanisms that drive cell cycle behavior and fate go wrong along the critical Notch pathway –– a communication channel already associated with the genesis of several genetic and neuromuscular diseases; the most common complex congenital heart disorder; and later life ills such as Alzheimer’s, breast and lung cancer, and leukemia.

"We now know that the transcription factor Cut is the key there," said Deng.

Assisted by FSU graduate student and co-author Jianjun Sun, Deng conducted the study using the powerful Drosophila (fruit fly) genetic model. Over the course of a year, they tracked the cell-to-cell communication in Drosophila egg chambers that control cell proliferation.

"We believe the specific cell-to-cell signaling and dysfunction observed in fruit flies is applicable to mammals, which also possess genes Notch and Cut," said Deng.

The researchers traced the journey of transmissions originating from Notch –– which carries information gleaned from other cells –– following the signals down the Notch pathway as Cut linked them to the control of cell proliferation in the egg chambers, which they observed at different stages.

When Cut accurately transcribed the Notch signals, the cells progressed appropriately from the conventional mitosis (replication and division) to the specialized endocycle, where cells cease division but still replicate their DNA.

But if Notch-to-Cut communication and Cut transcription were dysfunctional, so, too, was the cell cycle. In that case, the essential switch from mitosis to the endocycle failed, resulting in unregulated growth.

According to Deng, knowing exactly how and where in the Notch pathway early developmental signals get crossed may be crucial to future fixes, since mutations to the molecular mechanisms there are linked in humans to specific congenital and later life disorders.

"With further study, these findings may aid the development of interventions that target certain diseases precisely where and when they begin at the molecular level," he said.

Deng’s focus on Cut since joining the biological sciences faculty at FSU in 2004 followed a Notch study he also co-authored, which appeared in a 2001 issue of Development.

Wu-Min Deng | EurekAlert!
Further information:
http://www.bio.fsu.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>