Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find a potential key to human immune suppression in space

13.10.2005


Artificial microgravity causes suppression of 99 key immune genes, leading to T-cell suppression



Researchers at the San Francisco VA Medical Center have identified a set of key immune-response genes that do not turn on in a weightless environment. The discovery is another clue in the effort to solve an almost 40-year-old mystery: why the human immune system does not function well in the weightlessness of space.

The researchers, led by SFVAMC biochemist and former astronaut Millie Hughes-Fulford, PhD, identified a signaling pathway called PKA that in a gravity field responds to the presence of a pathogen by stimulating the expression of 99 genes that in turn cause the activation of T-cells, which are essential for proper immune function.


Hughes-Fulford found that in the simulated absence of gravity, the PKA pathway did not respond to the pathogen’s presence; as a result, 91 genes were not induced and eight genes were significantly inhibited, severely reducing the activation of T-cells. The paper was published on October 6 in FJ Express, the online rapid-publication section of the Journal of the Federation of American Societies for Experimental Biology.

"This is a specific signal pathway that is not working in the absence of gravity," says Hughes-Fulford, who is also an adjunct professor of medicine at the University of California, San Francisco. "You’re short-circuiting a whole lot of the immune response -- namely, the ability to proliferate T-cells -- which shouldn’t be a surprise, because life evolved in Earth’s gravity field."

Hughes-Fulford points out that there are only two known situations in which T-cell function is so severely compromised: HIV infection and weightlessness.

The research was conducted on human immune cells in culture that were placed in a device called a random positioning machine, which simulates freefall.

The researchers found that three other pathways which regulate immune function -- P13K, PKC, and pLAT -- were not affected by the absence of gravity.

"Why do some pathways work and some not? Perhaps it’s differences in the cytoskeleton – the interior architecture of the cell," speculates Hughes-Fulford. "It’s the infrastructure of the cell, a membrane made of lipid, and maybe without gravity it’s not as well-organized as it should be."

Human immune suppression in space was first observed in the 1960s and 70s during the Apollo missions conducted by the United States. As the researchers note in their paper, "15 of 29 Apollo astronauts reported a bacterial or viral infection during [a mission], immediately after, or within 1 week of landing back on Earth."

In 1991, Hughes-Fulford flew on STS-40, the first United States space shuttle mission dedicated to medical research. During that mission, she participated in experiments that identified T-cells as the particular components of immune function that were compromised. Her current study is the first to identify a specific mechanism for T-cell suppression in a weightless environment.

"It’s a potential key to understanding the lack of immune response in microgravity, thereby giving us a unique target for treatment," Hughes-Fulford says. She notes that the problem of immune function must be solved if human beings are ever to live and work in space for extended periods of time.

Hughes-Fulford will continue her research in September, 2006, when Russian cosmonauts carry a custom-designed container housing the same experiment aboard a Soyuz spacecraft that is scheduled to deliver supplies and experiments to the International Space Station and then return to Earth. "We know how these genes behave in simulated microgravity," she says. "The results from Soyuz should tell us what happens during spaceflight, in real microgravity."

Other authors of the study include J.B. Boonyaratanakornkit, BS, of UCSF; Augusto Cogoli, PhD, of the Swiss Federal Institute of Technology; Chai-Fei Li, BS, of the Northern California Institute for Research and Education; Thomas Schopper, BS, of the Swiss Federal Institute of Technology; and Proto Pippia, PhD, and Graci Galleri, PhD, of the University of Sassari, Italy.

Steve Tokar | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Life Sciences:

nachricht New insights into the world of trypanosomes
23.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht New Test for Rare Immunodeficiency
23.08.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

New Test for Rare Immunodeficiency

23.08.2017 | Life Sciences

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>