Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find a potential key to human immune suppression in space

13.10.2005


Artificial microgravity causes suppression of 99 key immune genes, leading to T-cell suppression



Researchers at the San Francisco VA Medical Center have identified a set of key immune-response genes that do not turn on in a weightless environment. The discovery is another clue in the effort to solve an almost 40-year-old mystery: why the human immune system does not function well in the weightlessness of space.

The researchers, led by SFVAMC biochemist and former astronaut Millie Hughes-Fulford, PhD, identified a signaling pathway called PKA that in a gravity field responds to the presence of a pathogen by stimulating the expression of 99 genes that in turn cause the activation of T-cells, which are essential for proper immune function.


Hughes-Fulford found that in the simulated absence of gravity, the PKA pathway did not respond to the pathogen’s presence; as a result, 91 genes were not induced and eight genes were significantly inhibited, severely reducing the activation of T-cells. The paper was published on October 6 in FJ Express, the online rapid-publication section of the Journal of the Federation of American Societies for Experimental Biology.

"This is a specific signal pathway that is not working in the absence of gravity," says Hughes-Fulford, who is also an adjunct professor of medicine at the University of California, San Francisco. "You’re short-circuiting a whole lot of the immune response -- namely, the ability to proliferate T-cells -- which shouldn’t be a surprise, because life evolved in Earth’s gravity field."

Hughes-Fulford points out that there are only two known situations in which T-cell function is so severely compromised: HIV infection and weightlessness.

The research was conducted on human immune cells in culture that were placed in a device called a random positioning machine, which simulates freefall.

The researchers found that three other pathways which regulate immune function -- P13K, PKC, and pLAT -- were not affected by the absence of gravity.

"Why do some pathways work and some not? Perhaps it’s differences in the cytoskeleton – the interior architecture of the cell," speculates Hughes-Fulford. "It’s the infrastructure of the cell, a membrane made of lipid, and maybe without gravity it’s not as well-organized as it should be."

Human immune suppression in space was first observed in the 1960s and 70s during the Apollo missions conducted by the United States. As the researchers note in their paper, "15 of 29 Apollo astronauts reported a bacterial or viral infection during [a mission], immediately after, or within 1 week of landing back on Earth."

In 1991, Hughes-Fulford flew on STS-40, the first United States space shuttle mission dedicated to medical research. During that mission, she participated in experiments that identified T-cells as the particular components of immune function that were compromised. Her current study is the first to identify a specific mechanism for T-cell suppression in a weightless environment.

"It’s a potential key to understanding the lack of immune response in microgravity, thereby giving us a unique target for treatment," Hughes-Fulford says. She notes that the problem of immune function must be solved if human beings are ever to live and work in space for extended periods of time.

Hughes-Fulford will continue her research in September, 2006, when Russian cosmonauts carry a custom-designed container housing the same experiment aboard a Soyuz spacecraft that is scheduled to deliver supplies and experiments to the International Space Station and then return to Earth. "We know how these genes behave in simulated microgravity," she says. "The results from Soyuz should tell us what happens during spaceflight, in real microgravity."

Other authors of the study include J.B. Boonyaratanakornkit, BS, of UCSF; Augusto Cogoli, PhD, of the Swiss Federal Institute of Technology; Chai-Fei Li, BS, of the Northern California Institute for Research and Education; Thomas Schopper, BS, of the Swiss Federal Institute of Technology; and Proto Pippia, PhD, and Graci Galleri, PhD, of the University of Sassari, Italy.

Steve Tokar | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>