Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New class of antibiotics effective against drug-resistant bacteria discovered in fungi

13.10.2005


A peptide identified in a fungus found in northern European pine forests possesses as much power as penicillin as well as vancomycin, according to an international team of researchers.



Reporting in the October 13 issue of Nature, a team from Denmark-based biotech company Novozymes, and researchers from Georgetown University Medical Center and the David Geffen School of Medicine at UCLA, say they have isolated "plectasin," the first defensin ever found in fungi. The research was performed at Novozymes laboratories in Denmark.

Defensins are peptides, miniature protein molecules that are produced by a wide range of animals to protect themselves against infection. Humans have defensins in their white blood cells and in their skin, for example, but it is believed that this new fungal defensin, plectasin, is more potent and targets certain bacteria more specifically.


Indeed, when plectasin was tested in the laboratory and in animals, it proved to be highly effective against the bacteria Streptococcus pneumoniae, and Streptococcus pyogenes, including strains that are now resistant to conventional antibiotics. These bacteria are responsible for such diseases as meningitis, community-acquired pneumonia, strep throat, life-threatening sepsis, and flesh destroying skin infections.

The discovery of plectasin has implications for the development of defensins as a treatment against many common, and deadly, infections, and may initiate a new era of antibiotic discovery and development, said study co-author Michael Zasloff, M.D., Ph.D., Professor in the Departments of Surgery and Pediatrics at Georgetown University Medical Center.

Zasloff says that the field of antibiotic development has not changed much since 1929 when Alexander Fleming realized that the fungal "bread mold" Penicillium, which had landed by chance in a Petri dish produced a substance that eliminated colonies of staphylococcal bacteria.

"Most antibiotics used by humans are produced by fungi and certain soil bacteria," he said. "Using our existing tools of discovery, we have failed to uncover any new classes of antibiotics from these sources over the past decade. However, by utilizing a new genetic approach that allowed the team to discover plectasin, we now know that a whole class of antibiotics has been overlooked."

"This finding (plectasin), and the existence of about 200,000 additional species of fungi, opens up a vast universe to explore for novel peptide antibiotics," said co-author Robert Lehrer, M.D., Distinguished Professor of Medicine at the David Geffen School of Medicine at UCLA. Plectasin, if proven safe and effective in humans, could be on the market by 2012, said Lehrer.

Zasloff and Lehrer are known internationally as experts in antimicrobial peptides - the class of antibiotics that plectasin falls within - and in this study they collaborated with Novozymes, a Danish biotech company that led the research. Zasloff and Lehrer are the only two scientists from U.S. universities on the team of 20 researchers who co-authored the research paper.

All life forms have to defend themselves against microbial invaders – bacteria, fungi, viruses – and to do this, they produce antimicrobial defensin peptides. In humans, defensins are made by specific white blood cells and immune cells that later engulf foreign invaders, and by the skin and mucous membranes, in order to kill microbes before they invade protective barriers.

Researchers believe that fungi have a similar system of defense, especially since these plant-like organisms live off rotting matter, said Zasloff. "They must compete with other organisms, like bacteria and viruses, which also want to consume the same meal. In addition, they need to defend themselves from being eaten by the microbes which surround them."

But he said no one had been able to find defensins in fungi using traditional research techniques, which involved growing fungi in liquid cultures and then testing the culture to see if it contained any antibiotic molecule.

The research team instead used the latest genetic science to search for the defensins they thought fungi must have. Selecting the Pseudoplectania nigrella species of fungus may have been serendipitous, Lehrer said, but the Novozymes team used state-of-the-art biotechnology to intercept ,and interpret its genetic messages and exhibited tremendous skill in producing plectasin efficiently, economically, and in large amounts." "I started working on antimicrobial peptides over three decades ago, said Lehrer, and my laboratory first described human defensins in 1985. So, the discovery of plectasin makes me feel like a grandfather."

Further examination revealed that this defensin, plectasin, resembles defensins found in spiders, scorpions, dragonflies and mussels - thus suggesting that the defensins found in insects, molluscs and fungi arose from a common ancestral gene, the researchers say. Based on this information, the scientists now believe that defensins appeared in living things more than a billion years ago.

The investigators then turned to the National Center for Antimicrobials and Infection Control, the Danish equivalent of the U.S. Centers for Disease Control, to test plectasin in the laboratory for antimicrobial activity against a broad spectrum of bacteria. It showed potent activity against several species of Gram-positive bacteria, and was especially active against S. pneumoniae (the leading cause of pneumonia), including all known clinical strains and those that are now resistant to conventional antibiotics. "That is important because increasing bacterial resistance to conventional antibiotics threatens the future of many antibiotics in current use," Zasloff said.

"In mouse studies, plectasin showed extremely low toxicity, and was as effective as vancomycin and penicillin in curing the animals of experimental peritonitis (inflammation of the lining of the abdominal cavity, which can be deadly) and pneumonia caused by S. pneumoniae, the researchers report.

"Although the precise mechanism by which plectasin exerts its antimicrobial activity is still under investigation, it may work by a mechanism that is very different from traditional antibiotics, Zasloff said.

"As a group, defensins exhibit activity against many types of bacteria, fungi, protozoa, and even viruses. It is entirely possible that fungal defensins will be discovered that could be developed against all of these human pathogens," Zasloff added.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>