Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene makes muscles in the obese store more fat

12.10.2005


The gene encoding an enzyme that hinders muscle from burning fat manufactures three times more enzyme in the muscle of obese people than lean people, researchers from Duke University Medical Center and Louisiana State University have found. This causes the obese muscle tissue to both store more fat and burn less fat, the researchers said.



"Obesity is a very complex disease, and this metabolic pathway does not fully explain obesity, but it is a likely contributor," said Deborah Muoio, Ph.D., senior study author and assistant professor of medicine at Duke’s Sarah W. Stedman Nutrition and Metabolism Center.

Excess fat storage in muscle tissue is a hallmark of obesity, and may contribute to problems such as diabetes and cardiovascular disease. The researchers discovered that skeletal muscle tissue and cells from obese people were programmed to store fat even when removed from the body and forced to grow in the laboratory. This finding suggests the gene is more active in obese people not only because of excess calorie intake, but also as a result of heritable changes in its regulation, Muoio said.


"The cells of obese people remembered their metabolic program, which could help explain, in part, why losing weight and maintaining weight loss is so difficult," Muoio said. "The good news is it’s possible to change your energy balance through exercise. Exercise can enhance muscle’s ability to burn fat," Muoio said. "This discovery also provides a potential drug target."

The results appear in the Oct. 12, 2005 issue of Cell Metabolism. The work was supported by National Institute of Diabetes & Digestive & Kidney Diseases, of the National Institutes of Health, the Pennington Biomedical Research Foundation and the American Diabetes Association.

Muoio suspects that the gene’s behavior is altered in obese people because of epigenetic control – alteration of gene activity states without variations in the DNA code. These changes can be triggered by environmental factors, such as nutrition or chemical exposure, and carried forward even after the stimulus is removed. The gene investigated in the study is present in obese and lean people, but was overexpressed, or more active, in obese muscle tissue and cells, which means the obese tissue produced larger quantities of enzyme.

In their study, the researchers analyzed stomach muscle tissue donated by non-diabetic obese and lean people who were having surgery. They examined muscle tissue and muscle satellite cells, which have the potential to develop into muscle. Both the tissue and cells from obese people were programmed to store excess fat in the form of fat droplets. The cells and tissue also burned less fat because they produced more of an enzyme that opposes fat oxidation. This excess fat storage may be linked to type 2 diabetes because skeletal muscle – muscle attached to bone – helps regulate sugar metabolism.

When the muscle satellite cells were encouraged to develop into mature muscle cells, they showed the same fat storage programming as muscle tissue. "This is a very important clue, because it indicates this program of fat storage is perpetuated as these cells divide. It’s not driven strictly by over-nutrition," Muoio said.

To identify the gene controlling this fat storage pathway, the research team relied on DNA microarrays, or "gene chips," to test the activity of thousands of genes at once. They also selected a few candidate genes (they chose culprits based on earlier research) to examine by a different method. In both cases, they arrived at the same gene, called steroyl-CoA desaturase 1 (SCD1), which was known to slow down fat burning and promotes fat storage.

"We found that obesity was associated with a threefold increase in SCD1 expression in obese muscle, as well as a threefold higher level of SCD1 enzyme, compared to lean muscle," Muoio said. The activity of other genes linked to fat metabolism and obesity were comparable between the two groups.

The researchers also investigated how muscle cells from lean individuals behaved when forced to overproduce the SCD1 enzyme. Using genetic engineering techniques, the team showed that cells from lean people mimicked the metabolism of obese cells, storing more fat droplets and burning less fat, when the amount of SCD1 was increased.

Becky Oskin | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>