Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene makes muscles in the obese store more fat

12.10.2005


The gene encoding an enzyme that hinders muscle from burning fat manufactures three times more enzyme in the muscle of obese people than lean people, researchers from Duke University Medical Center and Louisiana State University have found. This causes the obese muscle tissue to both store more fat and burn less fat, the researchers said.



"Obesity is a very complex disease, and this metabolic pathway does not fully explain obesity, but it is a likely contributor," said Deborah Muoio, Ph.D., senior study author and assistant professor of medicine at Duke’s Sarah W. Stedman Nutrition and Metabolism Center.

Excess fat storage in muscle tissue is a hallmark of obesity, and may contribute to problems such as diabetes and cardiovascular disease. The researchers discovered that skeletal muscle tissue and cells from obese people were programmed to store fat even when removed from the body and forced to grow in the laboratory. This finding suggests the gene is more active in obese people not only because of excess calorie intake, but also as a result of heritable changes in its regulation, Muoio said.


"The cells of obese people remembered their metabolic program, which could help explain, in part, why losing weight and maintaining weight loss is so difficult," Muoio said. "The good news is it’s possible to change your energy balance through exercise. Exercise can enhance muscle’s ability to burn fat," Muoio said. "This discovery also provides a potential drug target."

The results appear in the Oct. 12, 2005 issue of Cell Metabolism. The work was supported by National Institute of Diabetes & Digestive & Kidney Diseases, of the National Institutes of Health, the Pennington Biomedical Research Foundation and the American Diabetes Association.

Muoio suspects that the gene’s behavior is altered in obese people because of epigenetic control – alteration of gene activity states without variations in the DNA code. These changes can be triggered by environmental factors, such as nutrition or chemical exposure, and carried forward even after the stimulus is removed. The gene investigated in the study is present in obese and lean people, but was overexpressed, or more active, in obese muscle tissue and cells, which means the obese tissue produced larger quantities of enzyme.

In their study, the researchers analyzed stomach muscle tissue donated by non-diabetic obese and lean people who were having surgery. They examined muscle tissue and muscle satellite cells, which have the potential to develop into muscle. Both the tissue and cells from obese people were programmed to store excess fat in the form of fat droplets. The cells and tissue also burned less fat because they produced more of an enzyme that opposes fat oxidation. This excess fat storage may be linked to type 2 diabetes because skeletal muscle – muscle attached to bone – helps regulate sugar metabolism.

When the muscle satellite cells were encouraged to develop into mature muscle cells, they showed the same fat storage programming as muscle tissue. "This is a very important clue, because it indicates this program of fat storage is perpetuated as these cells divide. It’s not driven strictly by over-nutrition," Muoio said.

To identify the gene controlling this fat storage pathway, the research team relied on DNA microarrays, or "gene chips," to test the activity of thousands of genes at once. They also selected a few candidate genes (they chose culprits based on earlier research) to examine by a different method. In both cases, they arrived at the same gene, called steroyl-CoA desaturase 1 (SCD1), which was known to slow down fat burning and promotes fat storage.

"We found that obesity was associated with a threefold increase in SCD1 expression in obese muscle, as well as a threefold higher level of SCD1 enzyme, compared to lean muscle," Muoio said. The activity of other genes linked to fat metabolism and obesity were comparable between the two groups.

The researchers also investigated how muscle cells from lean individuals behaved when forced to overproduce the SCD1 enzyme. Using genetic engineering techniques, the team showed that cells from lean people mimicked the metabolism of obese cells, storing more fat droplets and burning less fat, when the amount of SCD1 was increased.

Becky Oskin | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>