Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique adds precision and permanence to gene therapy

11.10.2005


Mount Sinai School of Medicine researchers cured PKU in mice with new gene therapy technique



Mount Sinai School of Medicine researchers developed a technique for inserting genes into specific sites on the genome in liver cells. The genes are inserted into non-coding regions of the genome so there is no danger of interfering with the functioning of other genes. Once inserted, the gene remains a permanent part of the cell’s genome. In a study published in this week’s PNAS, the researchers used this technique to cure phenylketonuria (PKU) in mice.

"To date gene therapy has relied upon vectors that randomly insert genes into the cell’s genome," explains Savio L. C. Woo, PhD, Professor and Chairman of Gene and Cell Medicine at Mount Sinai School of Medicine and corresponding author on the study. "The technique we developed identifies a specific sequence which only occurs in a few places in the mammalian genome. These sequences occur between genes so there is no danger of the insertion of the gene damaging existing genes in the cell.


"Because the genes are inserted permanently, a few applications would suffice to permanently correct a disease." Dr. Woo and his colleague Li Chen , PhD, a post-doctoral fellow at Mount Sinai) were able to cure PKU in mice with just three intravenous injections. The levels of phenylalanine in the treated mice dropped to normal range and remained stable thereafter. Their fur color also changed from gray to black, indicating that they were now producing normal levels of melanin, a pigmentation which is under-produced in mice and humans with PKU.

Drs. Woo and Chen used a gene from a bacteriophage that recognizes a specific DNA sequence. This sequence occurs only several times in the entire mouse genome and it is always found in the non-coding region between genes. Similar sequences are found in a few locations in the human genome that are also between existing genes.

"The current challenge is to identify a suitable means of introducing DNA into liver cells," said Dr. Woo. "Once that technology is developed, this new technique will provide a safe and efficient means of integrating the DNA into the cell’s genome."

In addition to PKU, this technique could be used to cure other genetic diseases caused by missing liver enzymes including hemophilia and urea cycle enzyme deficiencies, as well as cholesterol clearing from the blood and others.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>