Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mitochondrial Optimization May Be Linked to Human Longevity

11.10.2005


A gradual optimization of mitochondria--the cells’ powerhouses--may have occurred in the human lineage, which could be associated with the evolution of human longevity and intelligence. The study is reported in the latest issue of the Journal of Molecular Evolution and was conducted by Joao Pedro de Magalhaes, a Portuguese researcher working at Harvard Medical School.

By comparing the mitochondrial genome of multiple primates, the researcher found several mitochondrial genes in which the normal form, or allele, of the gene in nonhuman primates is a disease-causing allele in humans. "What the results show is that certain alleles that cause diseases in humans are predominant in nonhuman primates," says de Magalhaes. "Certainly, some of these alleles do not cause diseases in nonhuman primates and hence secondary changes must have compensated for their deleterious effects. Still, these secondary changes could indicate adaptive differences between humans and nonhuman primates in the mitochondrion." Moreover, the researcher also found normal alleles in nonhuman primates that are associated with human late-onset diseases. It is possible that these late-onset disease-causing alleles are biologically significant, but since nonhuman primates do not live nearly as long as we do they do not develop the diseases. During the evolution of the human species, in which our lifespan was gradually extended, these disease-causing alleles had to be excluded from the population, which could have led to an optimization of the mitochondrion in humans.

Humans are not only the smartest primates but have the longest lifespan, and hence these results could indicate a gradual optimization of mitochondrial proteins in the lineage leading to humans as a means to delay certain forms of neurodegeneration. "It has long been argued that longevity and intelligence evolved together in the lineage leading to humans," says de Magalhaes. "In fact, some nonhuman primates develop neurodegenerative changes at considerably earlier ages than what is typically observed in human patients. Mitochondria have been associated with neurodegenerative diseases, including the genes whose human disease-causing allele was found to be the normal allele in some nonhuman primates, and the mitochondrial genome has be linked to aging. So the general pattern of these results could indicate a selection on the human mitochondrion associated with the higher human intelligence and extended lifespan. Still," de Magalhaes warns, "we will need more detailed studies to prove this hypothesis."



One reason for the researcher’s caution is that the mitochondrial genome encodes only a fraction of all mitochondrial proteins. Besides, further work is necessary to assess the exact biological significance of these findings. "The results show a statistically significant general pattern of selection on the mitochondrion in the lineage leading to humans, which may be associated with human longevity and the need to delay the onset of neurodegenerative changes, but they do not tell us which exact molecular changes are biologically significant. That will require a different, more detailed, type of approach and further genomic or biological data."

Joao Magalhaes | alfa
Further information:
http://www.med.harvard.edu
http://genomics.senescence.info/news/101105.html

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>