Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mitochondrial Optimization May Be Linked to Human Longevity

11.10.2005


A gradual optimization of mitochondria--the cells’ powerhouses--may have occurred in the human lineage, which could be associated with the evolution of human longevity and intelligence. The study is reported in the latest issue of the Journal of Molecular Evolution and was conducted by Joao Pedro de Magalhaes, a Portuguese researcher working at Harvard Medical School.

By comparing the mitochondrial genome of multiple primates, the researcher found several mitochondrial genes in which the normal form, or allele, of the gene in nonhuman primates is a disease-causing allele in humans. "What the results show is that certain alleles that cause diseases in humans are predominant in nonhuman primates," says de Magalhaes. "Certainly, some of these alleles do not cause diseases in nonhuman primates and hence secondary changes must have compensated for their deleterious effects. Still, these secondary changes could indicate adaptive differences between humans and nonhuman primates in the mitochondrion." Moreover, the researcher also found normal alleles in nonhuman primates that are associated with human late-onset diseases. It is possible that these late-onset disease-causing alleles are biologically significant, but since nonhuman primates do not live nearly as long as we do they do not develop the diseases. During the evolution of the human species, in which our lifespan was gradually extended, these disease-causing alleles had to be excluded from the population, which could have led to an optimization of the mitochondrion in humans.

Humans are not only the smartest primates but have the longest lifespan, and hence these results could indicate a gradual optimization of mitochondrial proteins in the lineage leading to humans as a means to delay certain forms of neurodegeneration. "It has long been argued that longevity and intelligence evolved together in the lineage leading to humans," says de Magalhaes. "In fact, some nonhuman primates develop neurodegenerative changes at considerably earlier ages than what is typically observed in human patients. Mitochondria have been associated with neurodegenerative diseases, including the genes whose human disease-causing allele was found to be the normal allele in some nonhuman primates, and the mitochondrial genome has be linked to aging. So the general pattern of these results could indicate a selection on the human mitochondrion associated with the higher human intelligence and extended lifespan. Still," de Magalhaes warns, "we will need more detailed studies to prove this hypothesis."



One reason for the researcher’s caution is that the mitochondrial genome encodes only a fraction of all mitochondrial proteins. Besides, further work is necessary to assess the exact biological significance of these findings. "The results show a statistically significant general pattern of selection on the mitochondrion in the lineage leading to humans, which may be associated with human longevity and the need to delay the onset of neurodegenerative changes, but they do not tell us which exact molecular changes are biologically significant. That will require a different, more detailed, type of approach and further genomic or biological data."

Joao Magalhaes | alfa
Further information:
http://www.med.harvard.edu
http://genomics.senescence.info/news/101105.html

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>