Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Shorter colds, milder flu may follow from newly revealed immune mechanism


Enlisted to help fight viral infections, immune cells called macrophages consume virus-infected cells to stop the spread of the disease in the body. Now researchers at Washington University School of Medicine in St. Louis have uncovered how macrophages keep from succumbing to the infection themselves. Boosting this mechanism may be a way to speed recovery from respiratory infections.

The researchers found that a specific protein produced in the course of respiratory viral infections can serve to protect macrophages from an untimely death. Their report will appear in an upcoming issue of Nature Medicine and is available on October 9 at the journal’s website.

"If the macrophages were to die, the infection would spread further," says senior author Michael J. Holtzman, M.D., the Selma and Herman Seldin Professor of Medicine and director of pulmonary and critical care medicine. "So the macrophages use a protein called CCL5 to ensure that the infection process can be stopped before it goes any further."

Holtzman thinks the information about the role of CCL5 may lead to new methods to hasten recovery from respiratory viral inflections like influenza or the common cold, which at present have no pharmacological cure.

CCL5’s role was discovered while Holtzman’s group was testing mice that had respiratory infections. They found that the sick mice produced massive amounts of CCL5--about a hundred times more than they produced when healthy.

"CCL5 was just off the chart compared to the other 30,000 mouse genes," Holtzman says. "Then the challenge was to figure out why CCL5 gene expression should be so far above everything else."

They found that mice lacking the gene to make CCL5 died much more frequently from respiratory virus infection than normal mice. Examining lung tissues from these CCL5-deficient mice, the researchers saw that macrophages--which would ordinarily enter the airway, clean up virus-infected cells and then leave--remained stuck in the airway tissue. It became apparent that the macrophages were unable to leave because they were infected with virus and so were dying prematurely.

Unexpectedly, the investigators found that CCL5 turns on signals that allow cells to escape virus-induced death. These signals are termed anti-apoptotic because they work against a process of programmed cell death called apoptosis. The CCL5-induced anti-apoptotic signals therefore help keep macrophages alive, which allows them to continue their job in the face of a viral onslaught.

"CCL5’s role is somewhat of a paradox," Holtzman says. "Ordinarily, apoptosis is a protective mechanism. Death of infected lung airway lining cells, or epithelial cells, would deprive the virus of its home and protect the host against the spread of infection. But in the case of the macrophage, it is the opposite. Preventing the death of the macrophage allows the host to ultimately clear the viral debris and so finally halt the infection. Balancing these cell death and survival pathways can determine whether the virus or the host wins the battle."

Next, the researchers will look further at precisely how CCL5 prevents cell death.

"In this initial study, we identified the cellular receptor for CCLR and some of the first downstream signals that convey a survival message," Holtzman says. "Now, we aim to define more specific signaling proteins that allow the cell to live or die in the face of infection. Identifying these signals may allow us to regulate these signals during an infection, and so make epithelial cells and macrophages more effective to shorten recovery time or lessen symptoms."

The ability to decrease the severity of lung infections may also have important implications for asthma, COPD (chronic obstructive pulmonary disease) and other chronic lung diseases, according to Holtzman.

"We commonly see children, for example, who develop these same types of severe respiratory infections as infants and then go on to develop asthma later," Holtzman says. "If we can improve the outcome from this first interaction with the viruses, we are very likely to also prevent the later development of persistent airway disease."

Gwen Ericson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>