Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells from amniotic fluid used to tissue-engineer a new trachea

10.10.2005


Pediatric surgeon looks to fetal cells to repair birth defects

Researchers at Children’s Hospital Boston report using tissue engineering to reconstruct defective tracheas (windpipes) in fetal lambs, first using cells from the amniotic fluid to grow sections of cartilage tube, and then implanting these living grafts into the lambs while still in the womb.

The tracheal repair technique is one of several tissue-engineering approaches pioneered at Children’s that use the fetus’s own cells, drawn from the amniotic fluid that surrounds it, to create patches to fix birth defects -- in this case, even before birth. Pediatric surgeon Dario Fauza, MD, who led the study, will present the team’s work on OOctober 8 at the American Academy of Pediatrics annual conference in Washington, DC.



Amniotic fluid is easily collected during pregnancy and contains unspecialized cells, known as mesenchymal stem cells, that can make many of the tissues needed to perform repairs, Fauza says.

While tracheal defects are rare, they’re life-threatening: babies born with incomplete, malformed or missing tracheas cannot breathe and must immediately go on heart-lung bypass, which can cause neurologic and other complications. Surgeons have tried various fixes, such as grafting in pieces of the baby’s rib or pelvic bone, using synthetic substances like Teflon, or implanting stents (in the hope that tissue would scar around the stents and form a tube), but with limited success.

"These are all makeshift solutions, and they’re fraught with complications – infection, narrowing of the trachea, reoperation," Fauza says. Working with sheep, considered a good model for humans (lambs grow quickly and are similar in size to human babies), Fauza’s team obtained a small quantity of amniotic fluid and isolated mesenchymal stem cells. Mesenchymal stem cells descend directly from embryonic stem cells and are abundant in the amniotic fluid. They specialize in making connective tissues, including muscle, bone, cartilage, fat and tendon.

Fauza’s team multiplied the amniotic mesenchymal cells in culture, then "seeded" them onto biodegradable tubes of the needed dimensions and shape. The tubes and cells were then exposed to growth factors that caused the mesenchymal cells to differentiate into cartilage cells. When the engineered grafts were ready, they were used to reconstruct defective tracheas in seven fetal lambs. Four to five weeks later, the lambs were born, and all five lambs that survived to term were able to breathe spontaneously at birth, four of them with no sign of respiratory distress. (The other two lambs, twins, were born prematurely and did not survive.)

While many congenital defects can be safely repaired after birth, Fauza’s goal is to fix tracheal defects in utero. Once the baby is born, tracheal surgery requires that the baby be intubated and ventilated long after the operation while the trachea heals; this can lead to many complications, including failure of the repair. Fetal surgery would eliminate these interventions and their resulting problems. "The fetus doesn’t need the trachea, so the repair would have time to heal in utero," Fauza explains. "And fetal healing is very good – it’s better than adult healing."

Fauza, whose research lab works closely with Children’s Advanced Fetal Care Center, has been investigating the idea of growing new tissues and organs for these tiny patients for eight years. Since the tissue-engineered grafts are made from the baby’s own cells, taken before birth, there would be no risk of the immune system rejecting the tissues, and since fetal cells are immature and not fully specialized, they can be used to generate a variety of tissues.

Currently, most tissue engineers use adult cells to create their lab-grown tissues. While Fauza has also used cells from the ear and from the bone marrow to derive cartilage cells, amniotic fluid is much more readily available. Millions of pregnant women elect to have amniotic fluid drawn to test for chromosome defects, the procedure known as amniocentesis. And when a prenatal ultrasound exam reveals fetal malformations, amniocentesis is usually recommended. Complications are rare.

"In many cases, the amniotic fluid is collected anyway," says Fauza. "It’s a precious resource that’s thrown out now, but shouldn’t be."

Less than two tablespoons of amniotic fluid provide enough fetal cells to repair a malformation in utero or after birth – potentially, even years later, Fauza says. He envisions a future in which amniotic fluid is banked for everyone’s use. "Fetal cells are the best cells you can have for tissue engineering," he says. "They grow very well, and they’re very plastic – you can coach them to do what you want."

Last year, Fauza reported using similar techniques in newborn lambs to repair congenital diaphragmatic hernia (CDH), or a hole in the diaphragm that separates the lungs from the visceral organs. If the hole is large enough, the stomach and other visceral organs can end up in the chest cavity, crowding the lungs and stunting their growth. Using mesenchymal stem cells from amniotic fluid, Fauza’s team engineered a tendon patch for the diaphragm; a year later, the lambs’ diaphragms showed good healing.

The FDA is now reviewing Fauza’s application to conduct a clinical trial in human babies with a prenatal ultrasound diagnosis of CDH; the amniotic fluid would be collected several months before birth and a tissue-engineered patch made ready for use soon after delivery. His team is also working on stem-cell-based, tissue-engineered grafts to fix spina bifida (in which the spinal column doesn’t close fully during fetal development) and structural cardiac defects, using similar principles.

Mary-Ellen Shay | EurekAlert!
Further information:
http://www.childrenshospital.org

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>