Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists learn to predict protein-stabilizing ability of small molecules

10.10.2005


’Osmolytes’ critical to survival of kidney cells and organisms in extreme environments



Researchers at the University of Texas Medical Branch at Galveston (UTMB) have developed a new way to predict the ability of certain small molecules to protect proteins in the cells of a wide variety of organisms living in extreme environments. The technique, described in a paper published online Oct. 7 in the Proceedings of the Natural Academy of Sciences (PNAS), is a method of calculating the stabilizing effect on cellular proteins by small organic molecules called "osmolytes." It could have implications for the study of Alzheimer’s disease, cystic fibrosis, kidney disease and stabilizing protein drugs.

Osmolytes, whose effects were first well described in 1982, work to preserve various forms of life under extraordinarily hostile conditions. They keep cells alive in human kidneys, for example, despite high concentrations of the protein-destroying chemical urea; they enable a species of frog found in the Arctic literally to be frozen solid and then thawed without harm; and they make it possible for the remarkable microscopic creatures known as "water bears" to survive complete drying, exposure to intense radiation, and temperatures ranging from a few degrees above absolute zero to that of superheated steam.


In the PNAS paper, Matthew Auton and D. Wayne Bolen describe their application of thermodynamic calculations to successfully predict the ability of a variety of osmolytes to protect proteins in cells under stress. Proteins function as molecular machines, performing tasks essential for cellular survival; extremes of heat and cold and changes in the chemical environment around the cell can cause the proteins to lose their proper shape and prevent them from functioning properly. Osmolytes, however, are able to force proteins to take on the correct shape and stay on the job.

"You can think of protein structure as origami, like strips of paper folded up into unique structures," said Bolen, senior author on the paper and a professor of human biological chemistry and genetics at UTMB. "Understanding how and why they fold or unfold -- they’re not very stable, and there’s this constant pressure on them to unfold -- is a major goal of biomedical science. What we’ve done is shown that we can calculate how osmolytes will influence the stability of different proteins, and we’ve also determined how different parts of the proteins interact with the osmolytes, which can give us significant insights on the protein-folding process."

Protein folding and unfolding, Bolen said, are critical features of disorders like Alzheimer’s disease, mad cow disease and cystic fibrosis. Osmolytes perform vital functions in many different locations in the human body, notably the kidneys and the brain. "Without osmolytes, the kidneys wouldn’t function at all, and brain tissue wouldn’t be able to be as resilient as it is," Bolen said. "Medicine has only really emphasized their role in the kidneys, but they also occur in a lot of other tissues, and this technique should be quite useful for medical researchers looking at osmolytes throughout the body."

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>