Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists learn to predict protein-stabilizing ability of small molecules

10.10.2005


’Osmolytes’ critical to survival of kidney cells and organisms in extreme environments



Researchers at the University of Texas Medical Branch at Galveston (UTMB) have developed a new way to predict the ability of certain small molecules to protect proteins in the cells of a wide variety of organisms living in extreme environments. The technique, described in a paper published online Oct. 7 in the Proceedings of the Natural Academy of Sciences (PNAS), is a method of calculating the stabilizing effect on cellular proteins by small organic molecules called "osmolytes." It could have implications for the study of Alzheimer’s disease, cystic fibrosis, kidney disease and stabilizing protein drugs.

Osmolytes, whose effects were first well described in 1982, work to preserve various forms of life under extraordinarily hostile conditions. They keep cells alive in human kidneys, for example, despite high concentrations of the protein-destroying chemical urea; they enable a species of frog found in the Arctic literally to be frozen solid and then thawed without harm; and they make it possible for the remarkable microscopic creatures known as "water bears" to survive complete drying, exposure to intense radiation, and temperatures ranging from a few degrees above absolute zero to that of superheated steam.


In the PNAS paper, Matthew Auton and D. Wayne Bolen describe their application of thermodynamic calculations to successfully predict the ability of a variety of osmolytes to protect proteins in cells under stress. Proteins function as molecular machines, performing tasks essential for cellular survival; extremes of heat and cold and changes in the chemical environment around the cell can cause the proteins to lose their proper shape and prevent them from functioning properly. Osmolytes, however, are able to force proteins to take on the correct shape and stay on the job.

"You can think of protein structure as origami, like strips of paper folded up into unique structures," said Bolen, senior author on the paper and a professor of human biological chemistry and genetics at UTMB. "Understanding how and why they fold or unfold -- they’re not very stable, and there’s this constant pressure on them to unfold -- is a major goal of biomedical science. What we’ve done is shown that we can calculate how osmolytes will influence the stability of different proteins, and we’ve also determined how different parts of the proteins interact with the osmolytes, which can give us significant insights on the protein-folding process."

Protein folding and unfolding, Bolen said, are critical features of disorders like Alzheimer’s disease, mad cow disease and cystic fibrosis. Osmolytes perform vital functions in many different locations in the human body, notably the kidneys and the brain. "Without osmolytes, the kidneys wouldn’t function at all, and brain tissue wouldn’t be able to be as resilient as it is," Bolen said. "Medicine has only really emphasized their role in the kidneys, but they also occur in a lot of other tissues, and this technique should be quite useful for medical researchers looking at osmolytes throughout the body."

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>