Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists learn to predict protein-stabilizing ability of small molecules

10.10.2005


’Osmolytes’ critical to survival of kidney cells and organisms in extreme environments



Researchers at the University of Texas Medical Branch at Galveston (UTMB) have developed a new way to predict the ability of certain small molecules to protect proteins in the cells of a wide variety of organisms living in extreme environments. The technique, described in a paper published online Oct. 7 in the Proceedings of the Natural Academy of Sciences (PNAS), is a method of calculating the stabilizing effect on cellular proteins by small organic molecules called "osmolytes." It could have implications for the study of Alzheimer’s disease, cystic fibrosis, kidney disease and stabilizing protein drugs.

Osmolytes, whose effects were first well described in 1982, work to preserve various forms of life under extraordinarily hostile conditions. They keep cells alive in human kidneys, for example, despite high concentrations of the protein-destroying chemical urea; they enable a species of frog found in the Arctic literally to be frozen solid and then thawed without harm; and they make it possible for the remarkable microscopic creatures known as "water bears" to survive complete drying, exposure to intense radiation, and temperatures ranging from a few degrees above absolute zero to that of superheated steam.


In the PNAS paper, Matthew Auton and D. Wayne Bolen describe their application of thermodynamic calculations to successfully predict the ability of a variety of osmolytes to protect proteins in cells under stress. Proteins function as molecular machines, performing tasks essential for cellular survival; extremes of heat and cold and changes in the chemical environment around the cell can cause the proteins to lose their proper shape and prevent them from functioning properly. Osmolytes, however, are able to force proteins to take on the correct shape and stay on the job.

"You can think of protein structure as origami, like strips of paper folded up into unique structures," said Bolen, senior author on the paper and a professor of human biological chemistry and genetics at UTMB. "Understanding how and why they fold or unfold -- they’re not very stable, and there’s this constant pressure on them to unfold -- is a major goal of biomedical science. What we’ve done is shown that we can calculate how osmolytes will influence the stability of different proteins, and we’ve also determined how different parts of the proteins interact with the osmolytes, which can give us significant insights on the protein-folding process."

Protein folding and unfolding, Bolen said, are critical features of disorders like Alzheimer’s disease, mad cow disease and cystic fibrosis. Osmolytes perform vital functions in many different locations in the human body, notably the kidneys and the brain. "Without osmolytes, the kidneys wouldn’t function at all, and brain tissue wouldn’t be able to be as resilient as it is," Bolen said. "Medicine has only really emphasized their role in the kidneys, but they also occur in a lot of other tissues, and this technique should be quite useful for medical researchers looking at osmolytes throughout the body."

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>