Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Antibody to a naturally-occurring sugar chain in colon inhibits inflammatory bowel disease


Ensemble of usual sugars offers clues to controlling inflammation

A collaboration led by the Burnham Institute for Medical Research has found that an antibody which binds to an unusual sugar molecule residing in the gut halts the inflammation seen in Crohn’s disease and other intestinal inflammations. The antibody could prove to be a promising drug target for these common chronic intestinal disorders.

Professor Hudson Freeze, Ph.D., director of Burnham’s glycobiology and carbohydrate chemistry program, together with staff scientist Geetha Srikrishna, Ph.D., and other colleagues found that a naturally "tweaked" sugar chain normally present on white blood cells and intestinal cells plays a role in inflammation. In addition, the team found that an antibody produced in reaction to the sugar’s presence curbed intestinal inflammation induced in mice. These findings will be published in the October 15th edition of Journal of Immunology.

"We looked at a number of sugar-binding molecules that may have had a role in inflammation," said Freeze. "One of the sugar chains elicited an antibody response, so we wondered whether the antibody would be able to block inflammation in mice. If so, this could have implications for inflammatory bowel disease, Crohn’s, and also might help combat other autoimmune inflammatory diseases, like arthritis."

The team identified a modified version of very common sugars known as N-linked glycans, which are found on the surface of white blood cells, as well as normal colon cells. These sugars are also found in colon tissue of patients suffering from Crohn’s disease.

The antibody was tested in a mouse model for Crohn’s disease created by transferring white blood cells with the capacity to induce severe intestinal inflammation into mice with compromised immune systems. "When administered 10 days after disease onset, the antibody was able to reverse early symptoms of inflammation and halt further progress of disease," said Srikrishna. The antibody also reduced the accumulation of white blood cells armed to fight disease and inhibited the expression of cellular messengers (cytokines) typically seen in inflammation.

"There are a large number of signaling molecules that are activated in inflammation," said Freeze. "Antibodies against these sugar chain molecules, however, appear to curb inflammation before cytokines associated with inflammation, like NF-kB and TNF, are activated. The sugar chain must be used at an earlier stage, but in a more specific manner."

The sugar chain’s specificity could be crucial to developing treatments for Crohn’s and other inflammatory disorders. The body’s inflammation response usually is a healthy reaction to harmful foreign agents; inflammation disposes of pathogens before they cause disease. Crohn’s disease and other inflammatory bowel diseases, generally known as auto-immune disorders, are a result of the body’s immune system overreacting to non-existent pathogens, causing the body to attack its own tissues. The optimal treatment would inhibit excessive inflammation linked with disease, leaving normal immune function unaffected.

The antibody, Freeze suggests, could prove to be an effective remedy for autoimmune disorders if it can act specifically on hyperactive inflammation, while preserving the immune system. RemicadeTM, an antibody-based drug currently used for Crohn’s, works by inhibiting the cytokines that are summoned into action at a later phase of these diseases.

"Our next step is to identify the molecular players in the body’s early inflammatory response in the intestine," said Freeze. The team is focusing on one particular molecule called RAGE (short for Receptor for Advanced Glycation End Products), which has been implicated in the pathology of inflammation, as well as cancer, diabetes and Alzheimer’s disease. They are also determining the exact molecular structure of the tweaked sugar chain, and will determine what other molecules and receptors may interact with it.

Eventually, the researchers hope that they will have enough promising information to merit a clinical trial to test the antibody’s effectiveness. "Our antibody was developed for use in mice. We need to "humanize" it, make the antibody suitable for human consumption. This could take some development, but the results could be very beneficial," Freeze said.

Freeze’s and Srikrishna’s colleagues included Professor Mitchell Kronenberg, Olga Turovskaya and Raziya Shaikh of the La Jolla Institute for Allergy and Immunology, Robbin Newlin of Burnham, Dirk Foell of the University of Muenster, Germany, and Simon Murch of the University of Warwick, England. The team’s research is supported by grants from the Broad Medical Research Program of The Eli and Edythe L. Broad Foundation and the National Institutes of Health.

Nancy Beddingfield | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>