Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibody to a naturally-occurring sugar chain in colon inhibits inflammatory bowel disease

10.10.2005


Ensemble of usual sugars offers clues to controlling inflammation



A collaboration led by the Burnham Institute for Medical Research has found that an antibody which binds to an unusual sugar molecule residing in the gut halts the inflammation seen in Crohn’s disease and other intestinal inflammations. The antibody could prove to be a promising drug target for these common chronic intestinal disorders.

Professor Hudson Freeze, Ph.D., director of Burnham’s glycobiology and carbohydrate chemistry program, together with staff scientist Geetha Srikrishna, Ph.D., and other colleagues found that a naturally "tweaked" sugar chain normally present on white blood cells and intestinal cells plays a role in inflammation. In addition, the team found that an antibody produced in reaction to the sugar’s presence curbed intestinal inflammation induced in mice. These findings will be published in the October 15th edition of Journal of Immunology.


"We looked at a number of sugar-binding molecules that may have had a role in inflammation," said Freeze. "One of the sugar chains elicited an antibody response, so we wondered whether the antibody would be able to block inflammation in mice. If so, this could have implications for inflammatory bowel disease, Crohn’s, and also might help combat other autoimmune inflammatory diseases, like arthritis."

The team identified a modified version of very common sugars known as N-linked glycans, which are found on the surface of white blood cells, as well as normal colon cells. These sugars are also found in colon tissue of patients suffering from Crohn’s disease.

The antibody was tested in a mouse model for Crohn’s disease created by transferring white blood cells with the capacity to induce severe intestinal inflammation into mice with compromised immune systems. "When administered 10 days after disease onset, the antibody was able to reverse early symptoms of inflammation and halt further progress of disease," said Srikrishna. The antibody also reduced the accumulation of white blood cells armed to fight disease and inhibited the expression of cellular messengers (cytokines) typically seen in inflammation.

"There are a large number of signaling molecules that are activated in inflammation," said Freeze. "Antibodies against these sugar chain molecules, however, appear to curb inflammation before cytokines associated with inflammation, like NF-kB and TNF, are activated. The sugar chain must be used at an earlier stage, but in a more specific manner."

The sugar chain’s specificity could be crucial to developing treatments for Crohn’s and other inflammatory disorders. The body’s inflammation response usually is a healthy reaction to harmful foreign agents; inflammation disposes of pathogens before they cause disease. Crohn’s disease and other inflammatory bowel diseases, generally known as auto-immune disorders, are a result of the body’s immune system overreacting to non-existent pathogens, causing the body to attack its own tissues. The optimal treatment would inhibit excessive inflammation linked with disease, leaving normal immune function unaffected.

The antibody, Freeze suggests, could prove to be an effective remedy for autoimmune disorders if it can act specifically on hyperactive inflammation, while preserving the immune system. RemicadeTM, an antibody-based drug currently used for Crohn’s, works by inhibiting the cytokines that are summoned into action at a later phase of these diseases.

"Our next step is to identify the molecular players in the body’s early inflammatory response in the intestine," said Freeze. The team is focusing on one particular molecule called RAGE (short for Receptor for Advanced Glycation End Products), which has been implicated in the pathology of inflammation, as well as cancer, diabetes and Alzheimer’s disease. They are also determining the exact molecular structure of the tweaked sugar chain, and will determine what other molecules and receptors may interact with it.

Eventually, the researchers hope that they will have enough promising information to merit a clinical trial to test the antibody’s effectiveness. "Our antibody was developed for use in mice. We need to "humanize" it, make the antibody suitable for human consumption. This could take some development, but the results could be very beneficial," Freeze said.

Freeze’s and Srikrishna’s colleagues included Professor Mitchell Kronenberg, Olga Turovskaya and Raziya Shaikh of the La Jolla Institute for Allergy and Immunology, Robbin Newlin of Burnham, Dirk Foell of the University of Muenster, Germany, and Simon Murch of the University of Warwick, England. The team’s research is supported by grants from the Broad Medical Research Program of The Eli and Edythe L. Broad Foundation and the National Institutes of Health.

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

More articles from Life Sciences:

nachricht The “Holy Grail” of peptide chemistry: Making peptide active agents available orally
21.02.2018 | Technische Universität München

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>