Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Collaborations yield new discoveries in psychiatric genetics

10.10.2005


Two New Jersey research teams are reporting discoveries about the biological nature of psychiatric disorders that may bring them closer to the ultimate goal of finding cures for complex diseases, such as autism and schizophrenia.



Scientists at Rutgers, The State University of New Jersey, in collaboration with colleagues at the University of Medicine and Dentistry of New Jersey (UMDNJ) have unveiled new information regarding the genetic, cellular and neurological bases of susceptibility to these diseases.

Using data drawn from the Rutgers Cell and DNA Repository on 518 families, each with multiple autistic children, James Millonig and Linda Brzustowicz, assisted by Emanuel DiCicco-Bloom, led a team that further substantiates the link between autism and Engrailed 2 (EN2), a gene important in central nervous system development. Their research is presented in the November issue of the American Journal of Human Genetics (AJHG).


Millonig and Brzustowicz had previously demonstrated an association with the gene in a sample of 167 families with autism. The new study adds another 351 families and now provides convincing statistical support for the existence of a mutated form of EN2 that increases the risk for autism. The statistics also showed EN2 may contribute to up to 40 percent of autism cases in the general population.

EN2 is involved with the development of the cerebellum, the part of the brain that governs movement and, to some extent, language and speech. A change in EN2 could potentially produce symptoms of autism. Further work on characterizing EN2 and on the identification of additional autism susceptibility genes will be funded by a $2.3 million grant to Millonig and DiCicco-Bloom and a linked $2.5 million grant to Brzustowicz from the National Institute of Mental Health (NIMH) to identify additional autism susceptibility genes.

Millonig is an assistant professor of neuroscience and cell biology at UMDNJ-Robert Wood Johnson Medical School (RWJMS) and an adjunct assistant professor in Rutgers’ department of genetics. He is also a resident faculty member of the Center for Advanced Biotechnology and Medicine, a research enterprise jointly operated by both institutions. Brustowicz is a professor of genetics at Rutgers, a board certified psychiatrist and an associate professor of psychiatry at the UMDNJ-New Jersey Medical School; DiCicco-Bloom is a professor of neuroscience and cell biology at UMDNJ-RWJMS.

A second team led by Brustowicz and Bonnie Firestein, an assistant professor in Rutgers’ department of cell biology and neuroscience, implicated a gene called CAPON in schizophrenia. A report of their research is available in the online journal PLoS (Public Library of Science) Medicine.

CAPON had been previously identified as a gene involved in the processes of communication between neurons in the brain. The Rutgers team identified a new variant of the CAPON gene that produces a shorter protein product. Using a sample of post-mortem brains, the researchers found elevated levels of this variant in the brains from individuals with schizophrenia and bipolar disorder. Brzustowicz and Firestein also offered their conclusions about how CAPON operates in its signaling context, functional evidence supporting the connection between the gene and these psychiatric diseases.

Researchers agree that there are environmental contributors to susceptibility to psychiatric disorders, but based on inheritance patterns of these diseases seen in families, the genetic component appears to be quite strong. The inheritance picture, however, is far from clear. It is not like the simple, one-gene models for eye color or blood type or found in such diseases as muscular dystrophy or cystic fibrosis.

"The diseases we study are polygenic, meaning that many genes are likely to contribute, but how many genes there are and how they interact are unknowns," Millonig said. "Identifying a gene in a complex disease may give more insight into the pathways involved – it helps you begin to unravel what is at its basis."

Earlier genetic studies of a Canadian study population of large families with a high incidence of schizophrenia pointed the way to CAPON. The gene was known to code for a protein that functioned in a neuronal pathway thought to be linked to schizophrenia. Beyond establishing a mere statistical connection between a gene and a psychiatric disorder – CAPON and schizophrenia – Firestein and Brzustowicz provided functional evidence as to the nature of the connection. "We began with a purely genetic approach and identified a region of chromosome 1 that seemed very likely to contain a susceptibility gene, but then moved on to studies of gene expression in human brains to search for convincing evidence of a functional role for CAPON in schizophrenia," Brzustowicz said.

The researchers discovered two forms of the gene are normally expressed in human brain, a long form and a short form. Based on what is known about the gene interactions, it is predicted that when the short form is present in excess, it will disrupt the signaling pathway, resulting in decreased function, reduced signaling and less communication, all of which are suspected to occur in schizophrenia, Firestein said. The published information includes a detailed description of how this is thought to occur.

The research team then analyzed the post-mortem brains – 35 from individuals with schizophrenia, 35 from bipolar individuals and 35 from those with normal brains – and found significantly increased levels of the short form in the specimens from individuals with psychiatric disorders.

While many genes have been implicated in schizophrenia based on family studies, there has been little functional evidence for alteration in the proteins that are actually involved, but with CAPON there does, indeed, appear to be functional evidence.

"If CAPON really does disrupt this cellular pathway so the neurons cannot signal when and where they are supposed to, there is a point of entry for therapeutics," Firestein said. "While we can’t make the therapeutics right now, we may have established some targets."

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>