Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New GM mosquito sexing technique is step towards malaria control, report scientists

10.10.2005


Scientists have genetically modified male mosquitoes to express a glowing protein in their gonads, in an advance that allows them to separate the different sexes quickly.

By providing a way to quickly sex mosquitoes, the advance paves the way for pooling large numbers of sterile males which could be used to control the mosquito population.

Research published online today in Nature Biotechnology, shows how a team from Imperial College London have altered male mosquitoes to express a green fluorescent protein in their gonads. Coupled with a high speed sorting technique, scientists will be able to identify and separate the different mosquito sexes much more easily than by manually sorting.



Professor Andrea Crisanti, senior author of the paper, from Imperial College London, said: “This advance could have enormous implications for controlling mosquito populations. Now that we can identify males and females at an early stage, it will be possible to release sterile males into the population without the risk of releasing additional females. The release of sterile males has proven effective in controlling several insect pests when methods for sorting sex are available.

“Female mosquitoes are responsible for spreading malaria, and also for damage to crops, but they are only able to breed once before dying. By forcing females to breed with sterile males, we can stop them creating additional mosquitoes and at the same time, reduce the population.”

The team used the mosquito Anopheles stephensi, the mosquito responsible for much of the malaria in Asia. They engineered the mosquito larvae to express an enhanced green fluorescent protein (EGFP). The modified larvae were mixed with normal larvae, and the researchers were able to identify the modified male mosquitoes by their fluorescent gonads.

When the genetically modified mosquitoes were mixed with normal male and female mosquitoes, they found the females were as likely to breed with the modified mosquitoes as they were with the normal ones.

This work builds on earlier work by the Imperial team published in 2000, demonstrating for the first time the insertion of a foreign gene into the mosquito genome. This raised the possibility that genetic manipulation could be used as a control method in mosquito populations.

Professor Crisanti adds: “Although there have been a number of control programmes to eradicate malaria, none of these have been entirely successful, and many have also had side effects, such as environmental damage through insecticides. This advance could one day make a major impact on the burden of ill health caused by malaria, and is another step towards how genetic modification can be used safely to deal with global problems.”

Tony Stephenson | alfa
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>