Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hair-raising stem cells identified


Swiss study shows that hair follicles contain bonafide multipotent stem cells

Using an animal model, a research team led by Yann Barrandon at the EPFL (Ecole Polytechnique Federale de Lausanne) and the CHUV (Lausanne University Hospital) has discovered that certain cells inside the hair follicle are true multipotent stem cells, capable of developing into the many different cell types needed for hair growth and follicle replacement. In an article appearing in the Oct 3 advance online edition of the Proceedings of the National Academy of Sciences, they demonstrate that these holoclones can be used for long-term follicle renewal.

In 2001, Barrandon was part of a French research team who reported in the scientific journal Cell that stem cells could be used to generate skin containing hair and sebaceous glands in mice. But at that time it was unclear whether the stem cells in hair follicles were true stem cells, capable of long-term renewal, or multipotent progenitor cells that would not permanently engraft in the follicle.

In the current PNAS study, the Swiss researchers have answered that question, using rat whisker hair follicles to demonstrate that the clonogenic keratinocytes in hair follicles are true stem cells.

Barrandon’s group isolated stem cells from rat whisker follicles, labelled them, and grew them in culture for 140 generations. They then implanted progeny cells into the skin of newborn mice whose hair follicles were just being formed. This skin was then grafted onto athymic (nude) mice. Some cells were incorporated into developing follicles, but other follicles were completely made up of labelled cells. Each progeny cell contributed to the formation of eight different types of cell in the follicle, including those of the outer root sheath, inner root sheath, the hair shaft, the sebaceous gland and the epidermis.

After 125 days, a biopsy was taken from the graft, and labelled stem cells were isolated, subcloned, cultivated and then once again transplanted. The rat whisker stem cells participated again in forming all the cell types needed to form the hair follicle and sebaceous glands, resulting in hair bulbs that underwent repeated normal phases of growth, rest and regeneration. The fact that the transplanted cells participate in the hair cycle over long periods of time shows that they are true multipotent stem cells and not progeniture cells.

"With the progeny of a single stem cell, it would be theoretically possible to generate the complete hair bulb of a human being, and one that would last for years," explains Barrandon.

The ability of the stem cells in hair follicles to repeatedly regenerate all the different cell types of the follicle and sebaceous glands has important implications for regenerative medicine. The method could one day be used to regenerate hair on patients with severe burns. This study is a logical complement to other work in Barrandon’s Laboratory of Stem Cell Dynamics, recognized for research into the reconstruction of injured tissues and organs.

Yann Barrandon | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>