Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hair-raising stem cells identified

06.10.2005


Swiss study shows that hair follicles contain bonafide multipotent stem cells



Using an animal model, a research team led by Yann Barrandon at the EPFL (Ecole Polytechnique Federale de Lausanne) and the CHUV (Lausanne University Hospital) has discovered that certain cells inside the hair follicle are true multipotent stem cells, capable of developing into the many different cell types needed for hair growth and follicle replacement. In an article appearing in the Oct 3 advance online edition of the Proceedings of the National Academy of Sciences, they demonstrate that these holoclones can be used for long-term follicle renewal.

In 2001, Barrandon was part of a French research team who reported in the scientific journal Cell that stem cells could be used to generate skin containing hair and sebaceous glands in mice. But at that time it was unclear whether the stem cells in hair follicles were true stem cells, capable of long-term renewal, or multipotent progenitor cells that would not permanently engraft in the follicle.


In the current PNAS study, the Swiss researchers have answered that question, using rat whisker hair follicles to demonstrate that the clonogenic keratinocytes in hair follicles are true stem cells.

Barrandon’s group isolated stem cells from rat whisker follicles, labelled them, and grew them in culture for 140 generations. They then implanted progeny cells into the skin of newborn mice whose hair follicles were just being formed. This skin was then grafted onto athymic (nude) mice. Some cells were incorporated into developing follicles, but other follicles were completely made up of labelled cells. Each progeny cell contributed to the formation of eight different types of cell in the follicle, including those of the outer root sheath, inner root sheath, the hair shaft, the sebaceous gland and the epidermis.

After 125 days, a biopsy was taken from the graft, and labelled stem cells were isolated, subcloned, cultivated and then once again transplanted. The rat whisker stem cells participated again in forming all the cell types needed to form the hair follicle and sebaceous glands, resulting in hair bulbs that underwent repeated normal phases of growth, rest and regeneration. The fact that the transplanted cells participate in the hair cycle over long periods of time shows that they are true multipotent stem cells and not progeniture cells.

"With the progeny of a single stem cell, it would be theoretically possible to generate the complete hair bulb of a human being, and one that would last for years," explains Barrandon.

The ability of the stem cells in hair follicles to repeatedly regenerate all the different cell types of the follicle and sebaceous glands has important implications for regenerative medicine. The method could one day be used to regenerate hair on patients with severe burns. This study is a logical complement to other work in Barrandon’s Laboratory of Stem Cell Dynamics, recognized for research into the reconstruction of injured tissues and organs.

Yann Barrandon | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>