Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural Stem Cells Are Long-Lived

06.10.2005


New studies in mice have shown that immature stem cells that proliferate to form brain tissues can function for at least a year — most of the life span of a mouse — and give rise to multiple types of neural cells, not just neurons. The discovery may bode well for the use of these neural stem cells to regenerate brain tissue lost to injury or disease.



Alexandra L. Joyner, a Howard Hughes Medical Institute investigator at New York University School of Medicine, and her former postdoctoral fellow, Sohyun Ahn, who is now at the National Institute of Child Health and Human Development, published their findings in the October 6, 2005, issue of the journal Nature. They said the technique they used to trace the fate of stem cells could also be used to understand the roles of stem cells in tissue repair and cancer progression.

“In terms of using neural stem cells for therapeutic purposes and to regenerate tissue, it’s important that they can continue to proliferate, and that these stem cells can make different cell types.”
Alexandra L. Joyner



Joyner said that previous studies by her lab and others had shown that a regulatory protein called Sonic hedgehog (Shh) orchestrates the activity of an array of genes during development of the brain. Scientists also knew that Shh played a role in promoting the proliferation of neural stem cells. However, Joyner said the precise role of Shh in regulating stem cell self-renewal — the process whereby stem cells divide and maintain an immature state that enables them to continue to generate new cells — was unknown.

In the studies published in Nature, Joyner and Ahn developed genetic techniques that enabled them to label neural stem cells in adult mice that are responding to Shh signaling at any time point so they could study which stem cells respond to Shh.

Other researchers had shown that transient bursts of Shh signaling caused neural stem cells to proliferate and create new neurons. But a central question remained, said Joyner. At issue was whether resting, or quiescent, cells — which are important for long-term function — responded to Shh signaling. Or was the response limited to the actively dividing stem cells with a short life span involved in building new tissue? To test these options, the researchers used a chemical called AraC that selectively kills fast-dividing cells, leaving only quiescent cells.

“This was an important experiment, because by giving AraC, we could kill all the cells that were actively dividing for a week,” said Joyner. “And since the quiescent cells only divide every couple of weeks, they were spared.” The researchers’ observations revealed that the quiescent cells did, indeed, respond to Shh signaling, expanding to produce large numbers of neural cells. Even when the researchers gave the mice two doses of AraC separated by a year, the quiescent cells recovered — demonstrating that the cells could still respond to Shh signaling.

That the quiescent stem cells remained capable of self-renewal after a year in both normal and AraC-treated mice was a central finding of the study, said Joyner. “It has been assumed that these cells probably live for some time, but it has never really been known whether they keep dividing, or divide a few times and give out,” she said.

The researchers also found evidence that neural stem cells in vivo responded to Shh signals by giving rise to other neural cell types, including glial cells that support and guide neurons. “An important point is that earlier studies indicating that neural stem cells could give rise to multiple cell types had been done in vitro,” said Joyner. “Before our work, it had never been formally shown that they normally make those different cell types in vivo.” Joyner and Ahn also found that the neural stem cell “niches” — the microenvironments in tissue that support and regulate stem cells — were not formed until late embryonic stages.

Joyner said that the new findings have important clinical implications. “In terms of using neural stem cells for therapeutic purposes and to regenerate tissue, it’s important that they can continue to proliferate, and that these stem cells can make different cell types,” she said.

In further studies, the researchers plan to use their technique of marking stem cells and tracing their fate to explore their role in repairing injured brain tissue in animal models. Such studies, she said, could reveal whether growth factors that influence stem cell growth could be used to treat brain injuries. “If these stem cells do produce cells that contribute to injury repair, it is fairly easy to infuse growth factors to coax these stem cells to do more in repairing injury,” she said.

Joyner and her colleagues are already discussing how to apply their genetic fate-mapping techniques to stem cells in the spinal cord and other organs. They are hopeful that since Shh signaling has been implicated in spurring the metastatic progression of cancer, the technique might also be used to explore the role of Shh signaling in tumor progression.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>