Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic research collaboration discovers why some DNA repair fails

05.10.2005


Significant for Huntington’s disease and colon cancer

Mayo Clinic researchers have discovered the inner workings of a defective DNA repair process and are first to explain why certain mutations are not corrected in cells. The finding is important because genetic instability and accumulations of mutations lead to disease. This discovery may lead to ways of fixing the process to avoid Huntington’s disease and some types of colon cancer.

The Mayo team discovered that under certain conditions, a key protein fails to recognize a specific form of DNA that it needs to begin the repair process by recruiting additional proteins. They report their findings in a recent issue of Nature Structural and Molecular Biology. (http://www.nature.com/nsmb/journal/v12/n8/pdf/nsmb965.pdf). By failing to initiate repair, the defective mechanism may give rise to disabling inherited brain diseases such as Huntington’s disease, which causes select brain nerve cells to waste away. Huntington’s affects 30,000 adults in the United States, and another 150,000 Americans may be at risk of inheriting it. Friedreich’s ataxia is another neurodegenerative disease that may one day have a treatment based in part on this finding, as could a form of heritable colon cancer (hereditary non-polyposis colon cancer).



"Hereditary neurodegenerative diseases such as Huntington’s disease have no cure and no effective therapy," says Cynthia McMurray, Ph.D., Mayo Clinic molecular biologist and lead investigator of the study. "Since the mutation initiates coding for the defective, toxic protein, we feel that it is likely that a successful effort to stop the steps leading to mutation will likely stop the progression of disease."

Significance of the Research

Identifying this repair defect is important to designing new therapies for Huntington’s and other diseases. A commentary accompanying the journal article (http://www.nature.com/nsmb/journal/v12/n8/pdf/nsmb0805-635.pdf) welcomes the clarity the Mayo work brings to the problem of DNA’s abnormal expansion within a cell, which appears to be the underlying condition that leads to the repair defect. The commentator notes that the finding helps provide "the first clues for understanding the expansion" phenomenon, and that the significance is that "expansion of simple, primarily triplet DNA repeats seems to be responsible for an ever-growing number of human hereditary disorders."

Dr. McMurray says the next step is to better understand the mechanism that causes the problem. "Towards this goal, we are currently dissecting the molecular mechanism by which the aborted function of this repair enzyme attenuates its normal repair pathway," she says. "This is crucial information for understanding how to design new drugs or other interventions that help patients."

A Day in the Life of DNA

From bacteria to humans, cells have evolved sophisticated means of repairing DNA that gets damaged -- by a variety of causes -- ranging from environmental stresses to inherent copying errors. Repair is necessary to prevent accumulations of mutations that can cause disease. Repair is therefore a normal part of a day in the life of DNA. As cells grow and divide, mismatch repair pathways are responsible for identifying irregular growth patterns and repairing specific irregularities in DNA.

Wrong Place at the Wrong Time

Dr. McMurray’s group studied a specific mismatch repair protein Msh2-Msh3 and found a paradox: Instead of helping repair DNA damage, under certain conditions, Msh2-Msh3 was actually harming the cell. Msh2-Msh3 did this when it arrived at the wrong place at the wrong time and bound to a specific portion of DNA (CAG-hairpin). This accident of binding at the CAG-hairpin altered the biochemical activity of Msh2-Msh3. This change in biochemical activity, in turn, promoted DNA expansion -- rather than repair -- and changed the function of Msh2-Msh3 from friend of DNA to foe by allowing damaged DNA to go unrepaired. Without DNA repair, mutations accumulate that lead to disease.

Collaboration and Support

In addition to Dr. McMurray, the research team at Mayo Clinic includes Barbara Owen, Ph.D.; Maoyi Lai; and John Badger, II. Other team members included: Zungyoon Yang and Jeffrey Hayes, Ph.D., from the University of Rochester, Rochester, N.Y.; Maciez Gajek and Teresa Wilson, Ph.D., from the University of Maryland in Baltimore; Winfried Edelmann, Ph.D., Albert Einstein College, Bronx, N.Y.; and Raju Kucherlapati, Ph.D., Harvard Medical School. Their work was sponsored by grants from the National Institutes of Health.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com

More articles from Life Sciences:

nachricht New procedure enables cultivation of human brain sections in the petri dish
19.10.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht The “everywhere” protein: honour for the unravellor of its biology
19.10.2017 | Boehringer Ingelheim Stiftung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>