Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic research collaboration discovers why some DNA repair fails

05.10.2005


Significant for Huntington’s disease and colon cancer

Mayo Clinic researchers have discovered the inner workings of a defective DNA repair process and are first to explain why certain mutations are not corrected in cells. The finding is important because genetic instability and accumulations of mutations lead to disease. This discovery may lead to ways of fixing the process to avoid Huntington’s disease and some types of colon cancer.

The Mayo team discovered that under certain conditions, a key protein fails to recognize a specific form of DNA that it needs to begin the repair process by recruiting additional proteins. They report their findings in a recent issue of Nature Structural and Molecular Biology. (http://www.nature.com/nsmb/journal/v12/n8/pdf/nsmb965.pdf). By failing to initiate repair, the defective mechanism may give rise to disabling inherited brain diseases such as Huntington’s disease, which causes select brain nerve cells to waste away. Huntington’s affects 30,000 adults in the United States, and another 150,000 Americans may be at risk of inheriting it. Friedreich’s ataxia is another neurodegenerative disease that may one day have a treatment based in part on this finding, as could a form of heritable colon cancer (hereditary non-polyposis colon cancer).



"Hereditary neurodegenerative diseases such as Huntington’s disease have no cure and no effective therapy," says Cynthia McMurray, Ph.D., Mayo Clinic molecular biologist and lead investigator of the study. "Since the mutation initiates coding for the defective, toxic protein, we feel that it is likely that a successful effort to stop the steps leading to mutation will likely stop the progression of disease."

Significance of the Research

Identifying this repair defect is important to designing new therapies for Huntington’s and other diseases. A commentary accompanying the journal article (http://www.nature.com/nsmb/journal/v12/n8/pdf/nsmb0805-635.pdf) welcomes the clarity the Mayo work brings to the problem of DNA’s abnormal expansion within a cell, which appears to be the underlying condition that leads to the repair defect. The commentator notes that the finding helps provide "the first clues for understanding the expansion" phenomenon, and that the significance is that "expansion of simple, primarily triplet DNA repeats seems to be responsible for an ever-growing number of human hereditary disorders."

Dr. McMurray says the next step is to better understand the mechanism that causes the problem. "Towards this goal, we are currently dissecting the molecular mechanism by which the aborted function of this repair enzyme attenuates its normal repair pathway," she says. "This is crucial information for understanding how to design new drugs or other interventions that help patients."

A Day in the Life of DNA

From bacteria to humans, cells have evolved sophisticated means of repairing DNA that gets damaged -- by a variety of causes -- ranging from environmental stresses to inherent copying errors. Repair is necessary to prevent accumulations of mutations that can cause disease. Repair is therefore a normal part of a day in the life of DNA. As cells grow and divide, mismatch repair pathways are responsible for identifying irregular growth patterns and repairing specific irregularities in DNA.

Wrong Place at the Wrong Time

Dr. McMurray’s group studied a specific mismatch repair protein Msh2-Msh3 and found a paradox: Instead of helping repair DNA damage, under certain conditions, Msh2-Msh3 was actually harming the cell. Msh2-Msh3 did this when it arrived at the wrong place at the wrong time and bound to a specific portion of DNA (CAG-hairpin). This accident of binding at the CAG-hairpin altered the biochemical activity of Msh2-Msh3. This change in biochemical activity, in turn, promoted DNA expansion -- rather than repair -- and changed the function of Msh2-Msh3 from friend of DNA to foe by allowing damaged DNA to go unrepaired. Without DNA repair, mutations accumulate that lead to disease.

Collaboration and Support

In addition to Dr. McMurray, the research team at Mayo Clinic includes Barbara Owen, Ph.D.; Maoyi Lai; and John Badger, II. Other team members included: Zungyoon Yang and Jeffrey Hayes, Ph.D., from the University of Rochester, Rochester, N.Y.; Maciez Gajek and Teresa Wilson, Ph.D., from the University of Maryland in Baltimore; Winfried Edelmann, Ph.D., Albert Einstein College, Bronx, N.Y.; and Raju Kucherlapati, Ph.D., Harvard Medical School. Their work was sponsored by grants from the National Institutes of Health.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>