Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon scientists create PNA molecule with potential to build nanodevices

05.10.2005


For the first time, a team of investigators at Carnegie Mellon University has shown that the binding of metal ions can mediate the formation of peptide nucleic acid (PNA) duplexes from single strands of PNA that are only partly complementary. This result opens new opportunities to create functional, three-dimensional nanosize structures such as molecular-scale electronic circuits, which could reduce by thousands of times the size of today’s common electronic devices. The research results will appear in the October 26 issue of the Journal of the American Chemical Society.



"DNA nanotechnology has led to the construction of sophisticated three-dimensional nano-architectures composed exclusively from nucleic acid strands. These structures can acquire a completely new set of magnetic and electrical properties if metal ions are incorporated in the nucleic acids at specific locations because the metal ions have unpaired electrons," said Catalina Achim, assistant professor of chemistry at the Mellon College of Science. "Our goal is to harness the information storage ability of metal-containing PNAs to build molecular-scale devices – tiny replicas of today’s electronic circuit components, such as wires, diodes and transistors."

Normally, DNA occurs as the well-known double helix first proposed by James Watson and Francis Crick 50 years ago. Each strand of the helix consists of a backbone linked to nucleobases, which occupy the inside of the helix. Nucleobases of one strand bind only to specific nucleobases of a complementary strand, and the two strands wind around one another like a twisted ladder. Artificially manufactured PNAs incorporate nucleobases that are bound to a backbone chain of pseudo-amino acids, rather than the sugar-phosphate groups of DNA.


"In modifying our PNAs so that they are significantly more stable, we have discovered that the PNA strands don’t have to be fully complementary for a metal-containing PNA duplex to form. This is an important finding because it should permit us to use non-complementary parts of the PNA duplexes to construct larger structures, which are useful for material science applications," said Achim.

Two years ago, Achim was the first scientist to report the construction of PNA duplexes that contained metal ions (nickel ions, specifically) and ligands inserted in place of a central nucleobases pair. Since then, the researchers, including graduate students and postdocs Richard Watson, Yury Skorik and Goutam Patra, have synthesized PNAs with a variety of ligands and metal ions to broaden the range of thermal stability and electronic properties. By replacing a nucleobase of a PNA with the molecule 8-hydroxyquinoline, which readily binds to copper ions, the research team constructed PNAs whose nucleic acid strands are only partly complementary and found that these duplexes are held together by standard Watson-Crick nucleobase pairs, but also by bonds between copper ions and the 8-hydroxyquinolines projecting from each of the two strands.

Lauren Ward | EurekAlert!
Further information:
http://www.andrew.cmu.edu
http://www.cmu.edu/mcs

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>