Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High fat diet alters hepatic immune system in mice

05.10.2005


Obese mice are more susceptible to liver abnormalities



Mice that were fed diets high in fat and sugar developed immune system abnormalities in their livers, including reduced numbers of natural killer T (NKT) cells. These diet-related changes may contribute to obesity-related liver disease, according to a new study. The study is published in the October 2005 issue of Hepatology, the official journal of the American Association for the Study of Liver Diseases (AASLD). Published by John Wiley & Sons, Inc., Hepatology is available online via Wiley InterScience at http://www.interscience.wiley.com/journal/hepatology.

NKT cells originate in the thymus but accumulate in the liver where they regulate the production of cytokines (cell proteins). A previous study of leptin-deficient obese mice noted depleted levels of NKT cells. However, since obese humans have increased leptin levels, the researchers were not sure if their findings in mice were relevant to human fatty liver disease. To address this question, they studied a new diet-induced model of non-alcoholic fatty liver disease.


The researchers, led by Zhiping Li of Johns Hopkins University in Baltimore, obtained wild-type mice and fed them commercial diets with different nutritional contents for four to twelve weeks. The mice were then sacrificed to obtain liver and serum tissue. The researchers isolated hepatic mononuclear cells, which they then incubated and evaluated by flow cytometry. They also isolated total hepatic RNA for analysis. Finally, they measured levels of serum alanine aminotransferases (ALT), a marker of liver injury.

The mice on high fat diets gained significantly more weight than the mice on normal diets, and they also developed fatty livers. Their hepatic mononuclear cells revealed significantly fewer hepatic CD4+ NKT cells. Subsequent tests revealed doubled production of IL-12, a cytokine that reduces NKT cell viability, as well as increased NKT cell death.

"Preliminary studies suggest that hepatic NKT cell numbers remain constant before high fat-fed mice develop significant steatosis after consuming the high fat diet for one week," the authors report. "However, more studies are needed to better understand the temporal relationship between development of steatosis and NKT cell depletion."

The results also showed that high fat diets increased the production of hepatic pro-inflammatory cytokine. When the researchers induced liver injury in mice on the varying diets, they found that high fat-diet mice experienced more inflammation and necrosis than normal-diet mice.

This study shows that high-fat diets correlate to a chronic inflammatory state in the liver, which promotes chronic liver disease. The researchers suggest a potential mechanism for this outcome: diet-induced depletion of the hepatic NKT cells that balance local production of pro- and anti-inflammatory cytokines.

"Further evaluation of other mouse strains, different age groups and genders will be necessary to clarify if any of these factors modulate susceptibility to diet-related changes in hepatic NKT cells," the authors say.

"Nevertheless," they conclude, "our findings are important because they clearly demonstrate significant dietary effects on ’classic’ NKT cells and cytokine production by other liver mononuclear cells."

David Greenberg | EurekAlert!
Further information:
http://www.wiley.com
http://www.interscience.wiley.com/journal/hepatology

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>