Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High fat diet alters hepatic immune system in mice

05.10.2005


Obese mice are more susceptible to liver abnormalities



Mice that were fed diets high in fat and sugar developed immune system abnormalities in their livers, including reduced numbers of natural killer T (NKT) cells. These diet-related changes may contribute to obesity-related liver disease, according to a new study. The study is published in the October 2005 issue of Hepatology, the official journal of the American Association for the Study of Liver Diseases (AASLD). Published by John Wiley & Sons, Inc., Hepatology is available online via Wiley InterScience at http://www.interscience.wiley.com/journal/hepatology.

NKT cells originate in the thymus but accumulate in the liver where they regulate the production of cytokines (cell proteins). A previous study of leptin-deficient obese mice noted depleted levels of NKT cells. However, since obese humans have increased leptin levels, the researchers were not sure if their findings in mice were relevant to human fatty liver disease. To address this question, they studied a new diet-induced model of non-alcoholic fatty liver disease.


The researchers, led by Zhiping Li of Johns Hopkins University in Baltimore, obtained wild-type mice and fed them commercial diets with different nutritional contents for four to twelve weeks. The mice were then sacrificed to obtain liver and serum tissue. The researchers isolated hepatic mononuclear cells, which they then incubated and evaluated by flow cytometry. They also isolated total hepatic RNA for analysis. Finally, they measured levels of serum alanine aminotransferases (ALT), a marker of liver injury.

The mice on high fat diets gained significantly more weight than the mice on normal diets, and they also developed fatty livers. Their hepatic mononuclear cells revealed significantly fewer hepatic CD4+ NKT cells. Subsequent tests revealed doubled production of IL-12, a cytokine that reduces NKT cell viability, as well as increased NKT cell death.

"Preliminary studies suggest that hepatic NKT cell numbers remain constant before high fat-fed mice develop significant steatosis after consuming the high fat diet for one week," the authors report. "However, more studies are needed to better understand the temporal relationship between development of steatosis and NKT cell depletion."

The results also showed that high fat diets increased the production of hepatic pro-inflammatory cytokine. When the researchers induced liver injury in mice on the varying diets, they found that high fat-diet mice experienced more inflammation and necrosis than normal-diet mice.

This study shows that high-fat diets correlate to a chronic inflammatory state in the liver, which promotes chronic liver disease. The researchers suggest a potential mechanism for this outcome: diet-induced depletion of the hepatic NKT cells that balance local production of pro- and anti-inflammatory cytokines.

"Further evaluation of other mouse strains, different age groups and genders will be necessary to clarify if any of these factors modulate susceptibility to diet-related changes in hepatic NKT cells," the authors say.

"Nevertheless," they conclude, "our findings are important because they clearly demonstrate significant dietary effects on ’classic’ NKT cells and cytokine production by other liver mononuclear cells."

David Greenberg | EurekAlert!
Further information:
http://www.wiley.com
http://www.interscience.wiley.com/journal/hepatology

More articles from Life Sciences:

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

nachricht UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis
26.06.2017 | University of Kentucky

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>