Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists identify gene defect leading to abnormal skin development and cancer

04.10.2005


Researchers at Jefferson Medical College and at the Wadsworth Center in New York have identified a gene defect in mice resulting in a range of abnormalities, from cyclical hair loss and skin cancer to severe problems in normal skin development. The work may lead to improved treatments for skin injuries, including burns, and might have implications for diseases such as eczema and psoriasis, as well as certain cancers.



Linda Siracusa, Ph.D., associate professor of microbiology and immunology at Jefferson Medical College of Thomas Jefferson University in Philadelphia and at Jefferson’s Kimmel Cancer Center and Bruce Herron, Ph.D., a research scientist at the Wadsworth Center of the New York State Department of Health and assistant professor in the Department of Biomedical Sciences at the State University of New York at Albany, wanted to identify the nature of an inherited genetic mutation in mice called repeated epilation (Er), and pinpoint the gene itself.

Mice carrying one copy of the mutation have cyclical hair loss, and develop skin cancer late in life. Mice carrying two copies have severe defects in skin development related to keratinocyte (skin cell) differentiation. At birth, they lack external openings – the nose and mouth are covered by skin, for example – and live only a brief time.


Previous studies had pinned the gene’s location to mouse chromosome 4. Reporting October 2, 2005 in the journal Nature Genetics, the research team describes how it subsequently narrowed the region on chromosome 4 to about 800 megabases, eventually uncovering a mutation in a gene, Stratifin. Stratifin is highly expressed in the epidermis and plays a role in preventing human cancers. The researchers identified an "insertion" mutation in the gene that resulted in a damaged Stratifin protein.

"We looked at a number of inbred strains and only saw a mutation in the Stratifin gene in mice with the Er features," Dr. Herron says. When the Er mutation was "rescued" by providing a molecular carrier containing normal genetic regions of chromosome 4, the mice had normal hair development.

"We were interested in genes affecting susceptibility to the development of skin cancer, and the Er mice provided a good model," says Dr. Siracusa. The initial goal of the work was to find out what gene was responsible for the Er mutation.

"We think the mutation is potentially another player in what could be a relatively novel pathway affecting the development of hair and skin," says Dr. Herron. The Stratifin gene is present in humans, and comparable genetic defects are under investigation.

Drs. Siracusa and Herron’s laboratories are continuing to collaborate to understand the mechanisms behind the gene defect’s effects on skin development, hair growth and tumor development.

The researchers note that Stratifin is turned off in many cancers, suggesting it may protect cells from becoming cancerous. The Stratifin gene could help lead to a better understanding of the susceptibility to and development of epithelial cancers such as those of the breast, prostate, skin, lung, ovary and colon, and could predict a person’s response to cancer therapy. Further studies may also lead to applications for hair loss treatment.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>