Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists identify gene defect leading to abnormal skin development and cancer

04.10.2005


Researchers at Jefferson Medical College and at the Wadsworth Center in New York have identified a gene defect in mice resulting in a range of abnormalities, from cyclical hair loss and skin cancer to severe problems in normal skin development. The work may lead to improved treatments for skin injuries, including burns, and might have implications for diseases such as eczema and psoriasis, as well as certain cancers.



Linda Siracusa, Ph.D., associate professor of microbiology and immunology at Jefferson Medical College of Thomas Jefferson University in Philadelphia and at Jefferson’s Kimmel Cancer Center and Bruce Herron, Ph.D., a research scientist at the Wadsworth Center of the New York State Department of Health and assistant professor in the Department of Biomedical Sciences at the State University of New York at Albany, wanted to identify the nature of an inherited genetic mutation in mice called repeated epilation (Er), and pinpoint the gene itself.

Mice carrying one copy of the mutation have cyclical hair loss, and develop skin cancer late in life. Mice carrying two copies have severe defects in skin development related to keratinocyte (skin cell) differentiation. At birth, they lack external openings – the nose and mouth are covered by skin, for example – and live only a brief time.


Previous studies had pinned the gene’s location to mouse chromosome 4. Reporting October 2, 2005 in the journal Nature Genetics, the research team describes how it subsequently narrowed the region on chromosome 4 to about 800 megabases, eventually uncovering a mutation in a gene, Stratifin. Stratifin is highly expressed in the epidermis and plays a role in preventing human cancers. The researchers identified an "insertion" mutation in the gene that resulted in a damaged Stratifin protein.

"We looked at a number of inbred strains and only saw a mutation in the Stratifin gene in mice with the Er features," Dr. Herron says. When the Er mutation was "rescued" by providing a molecular carrier containing normal genetic regions of chromosome 4, the mice had normal hair development.

"We were interested in genes affecting susceptibility to the development of skin cancer, and the Er mice provided a good model," says Dr. Siracusa. The initial goal of the work was to find out what gene was responsible for the Er mutation.

"We think the mutation is potentially another player in what could be a relatively novel pathway affecting the development of hair and skin," says Dr. Herron. The Stratifin gene is present in humans, and comparable genetic defects are under investigation.

Drs. Siracusa and Herron’s laboratories are continuing to collaborate to understand the mechanisms behind the gene defect’s effects on skin development, hair growth and tumor development.

The researchers note that Stratifin is turned off in many cancers, suggesting it may protect cells from becoming cancerous. The Stratifin gene could help lead to a better understanding of the susceptibility to and development of epithelial cancers such as those of the breast, prostate, skin, lung, ovary and colon, and could predict a person’s response to cancer therapy. Further studies may also lead to applications for hair loss treatment.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>