Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New immune cell found to be a key to inflammatory diseases

04.10.2005


The molecular roots of inflammatory and autoimmune diseases such as asthma, arthritis, and multiple sclerosis (MS) have been discovered by a team of researchers led by The University of Texas M. D. Anderson Cancer Center. They say their findings may point to ways to effectively treat these diseases - if not stop them before they start.



In a lead article in the November issue of Nature Immunology (released online on Oct. 2), the scientists report finding a novel type of "T helper" cell they say is the culprit for initiating chronic inflammation and autoimmunity in a variety of body tissues. This newly described T cell - which they call inflammatory TH cells (or THi) - produces interleukin 17 (IL-17), a potent cytokine that researchers have already linked to an immune system gone awry.

"We suspected that IL-17 is a player in autoimmune and inflammatory diseases, but we didn’t understand where IL-17 came from before this finding," says the study’s lead investigator, Chen Dong, Ph.D., an associate professor in the Department of Immunology.


"Now we have discovered the source of IL-17 and also have solidly demonstrated that these are the crucial cells that regulate tissue inflammation in autoimmune disease and asthma," he says. "These findings suggest that shutting down the activity of these THi cells might stop chronic inflammatory diseases from developing in the first place."

He adds that while such drugs are years away from development and clinical trials, agents that block IL-17 could represent an effective treatment, based on these results.

Dong and four other M. D. Anderson researchers collaborated with scientists from the University of Washington, the Institute for Systems Biology in Seattle and Johns Hopkins School of Medicine.

While the findings have no immediate relevance to the field of oncology, it is known that cancer can arise from inflammatory processes. Further understanding of how the immune system functions, and how it can go awry, is important, Dong says.

T cells are white blood cells that play a variety of roles in the immune system, including the identification of foreign molecules in the body, such as bacteria and viruses, and the activation and deactivation of other immune cells.

T helper cells are specific T cells that have receptors that recognize and bind to fragments (known as antigens) of the invaders that already have been displayed on the surface of other immune system cells. (These T helper cells are also called CD4 T cells since they express CD4 molecules.) Once the antigen has been bound, these T helper cells become activated, and they morph into "effector" cells which then boost an immune response by secreting "cytokine" molecules such as interleukins and interferons.

Before this study, two such different types of effector T helper cells had been known - type I (TH1), linked to the body’s response to microbial infection, and type 2 (TH2), which plays a crucial function in production of B cell antibodies and also is associated with development of allergies.

Although TH1 and TH2 are known to produce powerful cytokines - such as interferon-gamma (IFN-g) and allergy-associated interleukin 4 (IL-4), respectively - they are not inflammatory or associated with production of IL-17, which sets off an errant immune response that results in tissue inflammation.

Researchers could not understand the origins of such an inflammatory response in body tissues. The only clue they had was that excess IL-17 molecules are found in arthritic joints, in lungs swollen by asthma and in brain cells that lead to nerve degeneration and the onset of MS. "But we didn’t know which T cells were responsible for secreting IL-17," Dong says. To find out where IL-17 came from, the researchers designed a series of cell culture studies and mouse experiments. In brief, they "educated" T helper cells to become IL-17 producing cells. They found that IL-17 is triggered by a unique set of signals that now define this new "lineage" of T helper cells. "They are completely different from TH1 and TH2 effector cells," says Dong. They then used a mouse model of MS and demonstrated that they could stop development of the disease with an antibody agent that blocked IL-17. Finally, they developed a transgenic mouse model of asthma and found that, by producing excessive IL-17 in the lung, they were able to produce asthmalike symptoms.

Dong says the researchers hypothesize that these newly discovered THi cells travel to selected body tissues and release IL-17. This action, in turn, stimulates expression of "chemokines," which results in a rush of inflammatory cells into the tissue. Thus a chronic inflammatory reaction is set up, he says.

The scientists don’t know what initially sets off activation of the newly discovered T helper cell in diseases such as arthritis and asthma, Dong says. "We don’t know why these dangerous helper T cells are activated in the patients, but we now know how they function, and that should take us a long way to understanding and treating these and other inflammatory and autoimmune diseases."

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>