Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leading lampreys to slaughter: Pheromone for scourge of Great Lakes identified

04.10.2005


For the rats of Hamelin, it was the Pied Piper’s tune. For the destructive sea lamprey of the Great Lakes, it’s a chemical attractant, or pheromone, released by lamprey larvae living in streambeds. Following the pheromone trail, adults are drawn to streams favorable for spawning. Researchers have long wanted to identify the pheromone so it could be synthesized and used to control the sea lamprey, which laid waste to Great Lakes fisheries of lake trout and other species in the mid-20th century. Now, a team of University of Minnesota researchers has identified the three major components of the pheromone and synthesized the principal one, a novel steroid akin to a shark steroid that possesses anticancer activity. This is the first migratory attractant to be identified in any fish. The work is the cover story for the November issue of Nature Chemical Biology and will be published online in the journal Sunday, Oct. 2.



The lamprey is one of the earliest relics of vertebrate evolution, dating back nearly 400 million years, before the evolution of jaws and bony skeletons. The species parasitizes other fish by attaching with their circular, toothy mouths and sucking the body juices. A single lamprey will feed for about a year, consuming on average 40 pounds of fish. In the Great Lakes, their prey have been commercially valuable species like lake trout and whitefish.

Currently, the Great Lakes Fishery Commission (GLFC) controls lamprey by means of a poison that kills lamprey larvae in streambeds. It also kills every invertebrate it comes in contact with, and sometimes fish. The lampricide is tanker-trucked to streams, some of them in populated areas, in an expensive, labor-intensive and unpopular undertaking. The GLFC is eager to use a synthetic form of the newly found pheromone to replace the poison by luring lamprey to traps and sterilizing the males, the researchers said. Using the pheromone would be environmentally friendly and less expensive.


"The GLFC has the goal of controlling lamprey with a new and better technique by 2010. This could be it," said Peter Sorensen, a professor of fisheries, wildlife and conservation biology who led the study with chemistry professor Thomas Hoye. "Also, lamprey are important to native peoples on the West Coast, who value it for food. This pheromone could help restore lamprey runs by attracting lamprey to suitable spawning beds."

When they stop feeding, lamprey seek out streams for spawning by following the pheromone trails. After arriving at the spawning grounds, a sex pheromone -- which was identified by Weiming Li, an earlier doctoral student of Sorensen -- attracts the females to males. After spawning, which takes a few weeks, the adults die.

It has taken Sorensen and his colleagues about 15 years to find, isolate and purify the pheromone so that Hoye and his colleagues could identify and synthesize it. The key component is a steroid with potency so great that lampreys would smell a single gram dissolved in 10 billion liters of water, enough to fill 5,000 Olympic-sized swimming pools. This level of potency tops that of all other fish attractants, including those of salmon.

To find the pheromone, the researchers extracted 8,000 liters of water from tanks holding 35,000 larvae. The yield was less than a milligram, or 35 millionths of an ounce. Much of the work in isolating and purifying the pheromone was performed by Sorensen’s graduate student Jared Fine, while Vadims Dvornikovs, Christopher Jeffrey and Feng Shao in Hoye’s lab were integral to synthesizing the key component, called PADS. The chemical structure of PADS is very similar to that of squalamine, a compound made by the "dogfish" shark. Squalamine has been reported to work against cancer by inhibiting the growth of blood vessels that feed tumors but not other blood vessels. The other two components of the pheromone are a second steroid and an already known, lamprey-specific bile acid derivative.

Until the pheromone can be synthesized in bulk, extracts of water from larval lamprey nurseries are being used to trap adults on an experimental basis in Michigan streams.

"Using these extracts has been shown to work," said Sorensen. "Capture rates are up six-fold." Most lamprey traps have been simple, rather ineffective devices, but now the attractants have opened up many new possibilities for attracting lampreys safely, easily and inexpensively into streams, where they might be captured. In theory, the cue could attract lampreys from many locations for miles around and could work for as long as several months.

The work was supported by GLFC, the University of Minnesota Agricultural Experiment Station and the National Institutes of Health.

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>