Fitting in: Newly evolved genes adopt a variety of strategies to remain in the gene pool

The largest-ever experimental analysis of duplicated genes provides insight into mechanisms of evolution


When Mother Nature creates an identical copy of a gene in an organism’s genome, the duplicated copy is usually deleted, inactivated, or otherwise rendered nonfunctional in order to prevent genetic redundancy and to preserve biological homeostasis. In some cases, however, gene duplicates are maintained in a functional state. Until now, the biological and evolutionary forces behind the maintenance of these duplicates as functional components of the genome have remained unclear.

To determine the basis for the persistence of functional gene duplicates in the genome, three scientists at the Institute of Molecular Systems Biology at the Swiss Federal Institute of Technology in Zürich have collaborated on the largest systematic analysis of duplicated gene function to date. Using an integrative combination of computational and experimental approaches, they classified duplicate pairs of genes involved in yeast metabolism into four functional categories: (1) back-up, where a duplicate gene copy has acquired the ability to compensate in the absence of the other copy, (2) subfunctionalization, where a duplicate copy has evolved a completely new, non-overlapping function, (3) regulation, where the differential regulation of duplicates fine-tunes pathway usage, and (4) gene dosage, where the increased expression provided by the duplicate gene copy augments production of the corresponding protein.

Their results, which appear in the October issue of the journal Genome Research, indicate that no single role prevails but that all four of the mechanisms play a substantial role in maintaining duplicate genes in the genome.

“Our results contradict other recent publications that have focused on a single selective pressure as the basis for the retention of gene duplicates,” explains Dr. Uwe Sauer, principal investigator on the project and Professor at the Institute of Molecular Systems Biology at the Swiss Federal Institute of Technology in Zürich. “We show that, at least for yeast metabolism, the persistence of the duplicated fraction of the genome can be better explained with an array of different, often overlapping functional roles.”

Yeast metabolism provides an ideal model for investigating the functional basis for gene duplication because a large proportion of genes involved in this biological process have been duplicated. Of the 672 genes involved in yeast metabolism, 295 genes can be classified into 105 families of duplicates. To put this into perspective, the yeast genome has an estimated total of 6,000 genes, 1,500 of which are considered to be duplicates. An ancient whole-genome duplication event is thought to be responsible for the formation of many of these duplicate copies.

Sauer’s group demonstrated that of the 105 families of duplicated gene families involved in yeast metabolism, 34 demonstrated back-up function, 19 were involved in increased gene dosage, 18 exhibited regulatory functions, and 18 had evolved new, more specialized functions. Therefore, each of these mechanisms plays a substantial and important role in the maintenance of functional duplicates in the gene pool.

Media Contact

Maria A. Smit EurekAlert!

More Information:

http://www.cshl.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors