Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microarray technology could help predict patient response to adjuvant therapy for breast cancer

04.10.2005


Microarray technology could be used to tailor therapy according to the individual, and prevent breast cancer patients from having to undergo painful unsuccessful therapies. In a study published in the journal Breast Cancer Research, researchers analysed tumour tissue samples and identified a group of 64 genes that can be used to predict a patient’s response in the five years after adjuvant therapy for breast cancer. Identifying patients whose breast tumours express these genes could potentially be used to predict which patients would not benefit from adjuvant therapy, and avoid patients being given therapies with the potential of causing more harm than good.



A team of researchers led by Jonas Bergh from the Karolinska Institutet in Stockholm, Sweden, analysed the gene expression profiles of 159 breast cancer patients using DNA microarray analysis. From these samples they identified the genetic signatures shown by 38 patients who had a poor prognosis - defined as relapse or death from any cause within 5 years. The remaining 121 patients were defined as the ’good prognosis’ group. The researchers also used gene expression profiling to separate patients who did well with and without adjuvant therapy, and those whose tumours failed to respond to treatment.

An analysis of the genes expressed in the tumours of all 159 patients showed that 64 genes were used to separate the patients with good and poor prognoses. The researchers then tested the predictive value of the group of 64 genes compared with three currently used clinical markers. Using the expression patterns of the 64 genes identified by the researchers gave significantly better (P=0.007) prediction rates than histological grading, tumour stage and age - which are all accepted prognostic markers for breast cancer.


The present lack of criteria to help tailor breast cancer treatment to individual patients indicates a need to develop new techniques for better prediction of how patients will respond to adjuvant treatments. The researchers suggest that the technique of DNA microarray analysis could be developed to help breast cancer patients who do not benefit from adjuvant therapy, and avoid painful unnecessary treatments and wastage of healthcare resources.

Juliette Savin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>