Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist uses form to explain function of key building blocks of life

04.10.2005


University of Wisconsin-Madison biochemists have developed an approach that allows them to measure with unprecedented accuracy the strengths of hydrogen bonds in a protein. The scientists were then able to predict the function of different versions of the protein based on structural information, a novel outcome that was published recently in the Proceedings of the National Academy of Sciences.

Professor of biochemistry John Markley, along with a team that included graduate student I-Jin Lin, studied iron-sulfur proteins called rubredoxins that transfer energy in the form of electrons throughout living systems.

Rubredoxin is a key part of processes like photosynthesis and respiration, where energy is converted from one form to another.

"Variants of rubredoxin have evolved different sequences to transport electrons in the most efficient manner possible," Markley explains. "Different mechanisms have been put forward to explain this, and we wanted to understand how the proteins evolved to have different electron affinities."



Markley and his team used nuclear magnetic resonance spectroscopy, a technique that allowed them to observe signals from atoms in the proteins, to determine the strength of hydrogen bonds in ten different variants of the protein. From that data, the team was able to explain changes in protein function.

"In science, you try to build theories that will explain the properties of the systems you are looking at," explains Markley. "Proteins are the basic building blocks of life, and are coded for by the genes in DNA. We’d like to be able to start with a gene sequence and predict the structure of a protein and its function. In this case, given an NMR pattern, we can tell you how the protein will act. In general, this method may provide information about even more complex biological systems. This is an approach that will be important for larger proteins."

Markley notes that an undergraduate and graduate student played key roles in the study. Lin, who plans to complete her Ph.D. this spring, spent years tackling what Markley described as a "complex and difficult project."

Erika Gebel, the undergraduate on the study, is now pursuing a graduate degree of her own, a pursuit that was enhanced by this project, says Markley.

"(Undergraduate research) enables them to understand what research is and what’s involved in exploring something that hasn’t been observed before," he says.

John Markley | EurekAlert!
Further information:
http://www.nmrfam.wisc.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>