Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adult stem cells aid recovery in animal model of cerebral palsy

30.09.2005


Adult stem cell therapy quickly and significantly improves recovery of motor function in an animal model for the ischemic brain injury that occurs in about 10 percent of babies with cerebral palsy, researchers report.



Within two weeks, treated animals were about 20 percent less likely to favor the unaffected side of their bodies and experienced about a 25 percent improvement in balance, compared to untreated controls, Medical College of Georgia researchers say.

Their findings are being presented during the 34th annual meeting of the Child Neurology Society Sept. 28-Oct. 1 in Los Angeles.


“We found that when these cells, provided by Athersys, Inc., were injected directly into the brain, it significantly improves the outcome in the animals,” says Dr. James E. Carroll, chief of the MCG Section of Pediatric Neurology and the study’s principal investigator.

Athersys, Inc., a Cleveland-based biopharmaceutical company pursuing cell therapy programs in cardiovascular disease, stroke, cancer and other diseases, funded the research in which about 200,000 cells were injected directly into the brain injury site.

The adult stem cells, called multipotent progenitor cells because of their ability to make different types of tissue, were taken from the bone marrow of rats and expanded by Athersys for dosing in the injury model, Dr. Carroll says.

Seven days after injury, stem cells were injected directly into the brains of 22 animal models through a tiny hole in the skull. As with human transplant recipients, the animals were placed on immunosuppressive therapy to avoid rejection, although Athersys’ experience in multiple animal models for human disease has shown donor-recipient matches and immunosuppression are not required.

Behavioral tests seven days after transplant showed a trend toward recovery and significant recovery by day 14. About 1 percent to 2 percent of the transplanted cells actually survived, apparently replacing some cells destroyed by the original injury, while others helped injured cells recover.

“Recovery might be even more important in baby brains than forming new cells,” Dr. Cesario V. Borlongan, neuroscientist at MCG and the Veterans Affairs Medical Center in Augusta, says of newborn brains that recover more readily than adult brains. Dr. Borlongan, a co-author on the abstract, is exploring stem cell therapy’s potential for aiding stroke recovery, including the use of clinical-grade human adult cells provided by Athersys in a stroke animal model. About 80 percent of strokes are caused by clots that cause ischemic brain injury similar to that of cerebral palsy.

The MCG researchers have evidence that the healing benefit of stem cells comes from nourishing factors they secrete. The cells seem attracted by chemokines, growth factors that rally to an injury site, Dr. Carroll says. Next steps include looking at longer-term recovery and at whether surviving stem cells actually function as brain cells, networking with other cells by forming points of communication called synapses.

Perhaps most importantly, they also will look at whether stem cells produce similar results when they are given intravenously rather than injected directly into the injury site, Dr. Carroll says. “If the ideal way of doing it scientifically doesn’t work, why move on from here?” he says. “Now that we know it does work, we are going to look at different methods of injection to try and find the one that is the easiest. We think the chemokines, at least in part, attract the cells, so we hope it will work even when given through the bloodstream.”

He notes that the therapy likely will need to be done soon after injury. Whether this therapy could help the some 500,000 people in the United States living with cerebral palsy still must be explored, he says.

He and Dr. Borlongan note much work needs doing before their findings might move to clinical trials. But they are optimistic that the availability of clinical-grade cells would expedite such a move.

“We hope this will eventually be something that can be used in the neonatal intensive care unit in babies with severe asphyxial brain injuries,” Dr. Carroll says of cerebral palsy patients. He and other pediatric neurologists and neonatologists already have begun to discuss such possibilities.

“These results suggest another promising avenue for stem cell therapy, this time to help newborn babies recover from a potentially devastating injury of birth for which there currently is no treatment,” says Dr. Gil Van Bokkelen, chairman and chief executive officer of Athersys.

Ischemic brain injury accounts for about 10 percent of cerebral palsy, broadly defined as brain injury that occurs before or during birth, and about 80 percent of strokes. For every 1,000 babies born, one or two have cerebral palsy, with consequences ranging from undetectable to major physical and mental impairment. Currently there is no treatment to repair or reduce the damage of cerebral palsy; tPA was approved in 1996 by the U.S. Food and Drug Administration as the first stroke treatment to reduce the damage of ischemic injuries.

Co-authors on the study include Dr. David Hess, chair of the MCG Department of Neurology; Dr. Lin Xu, research scientist; Drs. Noriyuki Matsaukawa, Guolong Yu, Takao Yasuhara and Koichi Hara, postdoctoral fellows; and Athersys scientists Robert Mays, Jim Kovach and Robert Deans.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>