Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Image of myosin-actin interaction revealed in cover story of Molecular Cell


3-Dimensional Imaging of Motor Proteins Provides New Insights to Molecular Mechanics of Cell Motility, Muscle Contraction

Scientists from the Burnham Institute for Medical Research and the University of Vermont have captured the first 3-dimensional (3D) atomic-resolution images of the motor protein myosin V as it "walks" along other proteins, revealing new structural insights that advance the current model of protein motility and muscle contraction. The culmination of four years of work, this collaboration among biochemists and structural biologists was selected as the cover story for the September issue of the scientific journal Molecular Cell.

The Burnham team, led by Dorit Hanein, Ph.D., was the first to reveal the 3D representation of myosin V "walking" along actin filament, a key protein involved in motility and muscle contraction. Using electron-cryo microscopy to take 3D snapshots of myosin V and actin interacting, researchers were able to see myosin V moving along the actin substrate in a "natural state." Previous 2D models have been based on staining or other treatment of the myosin that might alter the complex’s natural mechanism of action.

Myosins are a large family of motor proteins that interact with actin filaments for motor movement and muscle contraction. Myosin V is the workhorse of the myosin protein family. It exists to ferry a cargo of proteins needed in a specific place at a specific time. Fueled by hydrolysis -- the process of converting the molecule adenosine triphosphate (ATP) into energy -- myosin V travels in one direction using actin as a track to deliver its payload of cell vesicles and organelles. Myosin V is also involved in transporting proteins that signal and communicate with other cells.

Myosin V has a two-chained "tail" that diverges to form two "heads" that bind to specific grooves on actin and walk hand over hand along the track, similar to the way a child moves along the monkey bars in a playground. Myosin V differs from the other myosin family proteins in that it is able to sustain this processive motion, enduring many hydrolysis cycles. The other myosins grab on tightly to actin and release after one hydrolysis cycle.

"This study required a different way of thinking about image analysis. This is the first time we were able to structurally visualize the weak binding states of actin and myosin, not interpolated from crystal structures, and not interpolated from biophysical methods," said Dr. Hanein. "We were able to see structural changes in the myosin lever arm as well as in the actin interface as it propagates through the hydrolysis cycle."

Structural information from previous studies provided information about parts of this process, but until the present collaboration, visualizing Myosin V in its weakly bound state to actin had not been possible. The Hanein group captured snapshots of Myosin V at several points during a hydrolysis cycle. Their use of electron cryo-microscopy made it possible to visualize flexible structural domains, which tether the Myosin V, helping to keep the protein on its actin track through the weak binding phase of the processive movement.

The detailed molecular knowledge of how myosin interacts through the hydrolysis cycle with actin provides an exciting new research template onto which scientists can design new sets of experiments to further refine the myosin-actin binding region and to correlate it with loss or gain of function. The precise characterization of this myosin-actin interface is critical, evident by the way a single amino acid change in myosin leads to familial hypertrophic cardiomyopathy (FHC), an undetectable condition resulting in death by sudden cardiac arrest in otherwise healthy young adults.

Contributors to this work include: Niels Volkmann, Ph.D., assistant professor and first author on this publication, Dorit Hanein, Ph.D., associate professor, Hong-Jun Liu and Larnele Hazelwood from the Burnham Institute for Medical Research; and Kathleen M. Trybus, Ph.D., Susan Lowey, Ph.D., and Elena B. Kremenstova, Ph.D., from the Department of Molecular Physiology and Biophysics at the University of Vermont.

Functional, biochemical assays were conducted by collaborators from the University of Vermont, directed by Kathleen Trybus, Ph.D.

Nancy Beddingfield | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>