Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered gene may predict aggressive ovarian cancer

30.09.2005


Johns Hopkins Kimmel Cancer Center researchers have linked alterations in a gene, called Rsf-1, to the most deadly ovarian cancers. The scientists say the discovery is the first to establish a role for the gene in ovarian cancer and may lead to a test that can predict, early on, which patients will develop aggressive disease.



"We hope new therapies can be tailored to target Rsf-1, in the same way that Herceptin for breast cancer attacks the Her2/neu gene pathway," says Tian-Li Wang, Ph.D., assistant professor of gynecology/obstetrics and oncology at Johns Hopkins.

The scientists’ findings, reported in the September 27 issue of the Proceedings of the National Academy of Sciences, described a surge in the number of Rsf-1 gene copies in 13.2 percent (16 of 121) of high grade ovarian cancers, but not in low grade or benign ovarian tumors. Normally, cells contain two copies of every gene. In cancer cells, the copying mechanism goes haywire creating dozens of gene copies in a process called amplification.


Survival data showed that the 16 patients with Rsf-1 amplification fared worse than patients without the ramped-up genes, living an average of 29 months versus 36 months.

Hopkins scientists discovered their first clues to Rsf-1 after sifting through the entire genome of seven ovarian cancer cell lines using a method developed three years ago with their Johns Hopkins colleague, Victor Velculescu, M.D., Ph.D. The search tool digitizes genetic code and pinpoints abnormalities within precise regions of the DNA, much the way global mapping tools zoom in on specific addresses.

According to Ie-Ming Shih, M.D., Ph.D., associate professor of pathology and oncology, who co-directs the laboratory with Wang, other gene typing methods can identify abnormalities within wide areas of the genome, but the tool used for this study, called digital karyotyping, is far more precise. "It’s like narrowing down our search from the entire State of Maryland to a certain building in Baltimore City," he says.

In three of the seven cell lines, the scientists homed in on chromosome 11 after finding high levels of amplification in a region known for cancer-related genes. Further analysis of this region revealed that the Rsf-1 gene was overexpressed far more than 12 other genes in the same area.

Rsf-1 typically opens and closes the scaffolding structure of DNA, which acts as the gatekeeper to protein manufacturing. The Hopkins scientists say that when Rsf-1 is amplified, it may disturb this process and create more space for protein production of certain genes that may promote tumor growth.

"It’s important for us to learn more about how Rsf-1 creates aggressive cancers in order to develop drugs that target it," says Wang. "But right now, we’ll need to test larger samples to determine if Rsf-1 accurately predicts clinical outcome."

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinskimmelcancercenter.org
http://www.ovariancancercenter.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>