Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered gene may predict aggressive ovarian cancer

30.09.2005


Johns Hopkins Kimmel Cancer Center researchers have linked alterations in a gene, called Rsf-1, to the most deadly ovarian cancers. The scientists say the discovery is the first to establish a role for the gene in ovarian cancer and may lead to a test that can predict, early on, which patients will develop aggressive disease.



"We hope new therapies can be tailored to target Rsf-1, in the same way that Herceptin for breast cancer attacks the Her2/neu gene pathway," says Tian-Li Wang, Ph.D., assistant professor of gynecology/obstetrics and oncology at Johns Hopkins.

The scientists’ findings, reported in the September 27 issue of the Proceedings of the National Academy of Sciences, described a surge in the number of Rsf-1 gene copies in 13.2 percent (16 of 121) of high grade ovarian cancers, but not in low grade or benign ovarian tumors. Normally, cells contain two copies of every gene. In cancer cells, the copying mechanism goes haywire creating dozens of gene copies in a process called amplification.


Survival data showed that the 16 patients with Rsf-1 amplification fared worse than patients without the ramped-up genes, living an average of 29 months versus 36 months.

Hopkins scientists discovered their first clues to Rsf-1 after sifting through the entire genome of seven ovarian cancer cell lines using a method developed three years ago with their Johns Hopkins colleague, Victor Velculescu, M.D., Ph.D. The search tool digitizes genetic code and pinpoints abnormalities within precise regions of the DNA, much the way global mapping tools zoom in on specific addresses.

According to Ie-Ming Shih, M.D., Ph.D., associate professor of pathology and oncology, who co-directs the laboratory with Wang, other gene typing methods can identify abnormalities within wide areas of the genome, but the tool used for this study, called digital karyotyping, is far more precise. "It’s like narrowing down our search from the entire State of Maryland to a certain building in Baltimore City," he says.

In three of the seven cell lines, the scientists homed in on chromosome 11 after finding high levels of amplification in a region known for cancer-related genes. Further analysis of this region revealed that the Rsf-1 gene was overexpressed far more than 12 other genes in the same area.

Rsf-1 typically opens and closes the scaffolding structure of DNA, which acts as the gatekeeper to protein manufacturing. The Hopkins scientists say that when Rsf-1 is amplified, it may disturb this process and create more space for protein production of certain genes that may promote tumor growth.

"It’s important for us to learn more about how Rsf-1 creates aggressive cancers in order to develop drugs that target it," says Wang. "But right now, we’ll need to test larger samples to determine if Rsf-1 accurately predicts clinical outcome."

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinskimmelcancercenter.org
http://www.ovariancancercenter.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

A Nano-Roundabout for Light

09.12.2016 | Physics and Astronomy

Further Improvement of Qubit Lifetime for Quantum Computers

09.12.2016 | Physics and Astronomy

New weapon against Diabetes

09.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>