Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Newly discovered gene may predict aggressive ovarian cancer


Johns Hopkins Kimmel Cancer Center researchers have linked alterations in a gene, called Rsf-1, to the most deadly ovarian cancers. The scientists say the discovery is the first to establish a role for the gene in ovarian cancer and may lead to a test that can predict, early on, which patients will develop aggressive disease.

"We hope new therapies can be tailored to target Rsf-1, in the same way that Herceptin for breast cancer attacks the Her2/neu gene pathway," says Tian-Li Wang, Ph.D., assistant professor of gynecology/obstetrics and oncology at Johns Hopkins.

The scientists’ findings, reported in the September 27 issue of the Proceedings of the National Academy of Sciences, described a surge in the number of Rsf-1 gene copies in 13.2 percent (16 of 121) of high grade ovarian cancers, but not in low grade or benign ovarian tumors. Normally, cells contain two copies of every gene. In cancer cells, the copying mechanism goes haywire creating dozens of gene copies in a process called amplification.

Survival data showed that the 16 patients with Rsf-1 amplification fared worse than patients without the ramped-up genes, living an average of 29 months versus 36 months.

Hopkins scientists discovered their first clues to Rsf-1 after sifting through the entire genome of seven ovarian cancer cell lines using a method developed three years ago with their Johns Hopkins colleague, Victor Velculescu, M.D., Ph.D. The search tool digitizes genetic code and pinpoints abnormalities within precise regions of the DNA, much the way global mapping tools zoom in on specific addresses.

According to Ie-Ming Shih, M.D., Ph.D., associate professor of pathology and oncology, who co-directs the laboratory with Wang, other gene typing methods can identify abnormalities within wide areas of the genome, but the tool used for this study, called digital karyotyping, is far more precise. "It’s like narrowing down our search from the entire State of Maryland to a certain building in Baltimore City," he says.

In three of the seven cell lines, the scientists homed in on chromosome 11 after finding high levels of amplification in a region known for cancer-related genes. Further analysis of this region revealed that the Rsf-1 gene was overexpressed far more than 12 other genes in the same area.

Rsf-1 typically opens and closes the scaffolding structure of DNA, which acts as the gatekeeper to protein manufacturing. The Hopkins scientists say that when Rsf-1 is amplified, it may disturb this process and create more space for protein production of certain genes that may promote tumor growth.

"It’s important for us to learn more about how Rsf-1 creates aggressive cancers in order to develop drugs that target it," says Wang. "But right now, we’ll need to test larger samples to determine if Rsf-1 accurately predicts clinical outcome."

Vanessa Wasta | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>