Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Lifespan Extension Genes Found

30.09.2005


New genes tied to lifespan extension in yeast have been identified by researchers from UC Davis and Harvard Medical School.



Drastically reducing calorie intake, or caloric restriction, is known to extend the lifespan of species including yeast, worms and rodents. Previous research linked a gene called Sir2 with lifespan extension due to caloric restriction, but worms and yeast that lack Sir2 also live longer when put on a tough diet, showing that some other genes must be at work.

Researchers led by David Sinclair at Harvard Medical School and Su-Ju Lin at UC Davis’ Center for Genetics and Development and Section of Microbiology screened for other life-extending genes in yeast. They found a gene called Hst2 that accounts for most of the difference.


Deleting Hst2 and Sir2 blocked most of the beneficial effect of caloric restriction. When Hst2 was overexpressed, so that the gene was more active than normal, the yeast lived longer than normal. A third gene, Hst1, appears to act when both Sir2 and Hst2 are missing.

Sir2 and the newly identified Hst genes account for all of the life-prolonging effects of caloric restriction in yeast, Lin said.

In yeast, the effects of aging seem to be due to a build-up of toxic circular DNA molecules that accidentally get copied out of ribosomal DNA, an unstable area of the yeast genome that contains hundreds of repeated sequences.

The researchers showed that caloric restriction drastically reduces recombination of ribosomal DNA, and that deleting Hst2 and Sir2 blocks this effect.

Very similar genes are found in widely different animals including worms, flies and rodents. But the targets of these genes are likely to be different, as the toxic DNA circles have not been identified in more advanced organisms, Lin said.

The work was published in the Sept. 16 issue of Science.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>