Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VCU researchers design new receptor and enhance bioassay to advance drug discovery process

29.09.2005


Virginia Commonwealth University chemists have created a new molecular receptor for a fluorescent dye used to track a drug candidate’s activity inside cell membranes.



These findings may help researchers more efficiently design, evaluate and test new drugs like antibiotics and therapeutics for genetic diseases, such as cystic fibrosis and Bartter’s syndrome, because they will know precisely where the drug is acting inside a cell.

According to the study in the Journal of the American Chemical Society, published online on September 27, researchers designed and synthesized a new cyclen-based receptor, and demonstrated its ability to strongly bind the fluorescent dye, pyranine, under near-physiological conditions. Furthermore, researchers were able to improve upon the currently applied membrane leakage assay used to evaluate specific properties of a developmental drug compound. Assays are used to help develop safer drugs by evaluating properties of absorption, distribution and metabolism.


“There is a growing need for the development of assays to rapidly assess the activity of developmental drug compounds under near-physiological conditions,” said Vladimir Sidorov, Ph.D., a professor of organic chemistry at VCU and lead investigator of this study. “Therefore, we wanted to improve on the existing membrane leakage assay.

“The high affinity of this receptor to pyranine, its impermeability to the lipid bilayer membrane and fast kinetics of binding were used as a basis for the new membrane-leakage assay,” he said.

According to Sidorov, the membrane leakage assay is compatible with a second type of assay that monitors the ionophoretic activity of the drug candidate in the cell model. Ionophoretic activity is the ability of compound to transport ions across biological membranes. Using the assays together allows researchers to distinguish between selective ion transport and formation of large pores perturbing the integrity of cell membranes within a single set of experiments.

The new receptor is ideal because it selectively binds to pyranine, he said. Pyranine does not penetrate the lipid membrane of the cell, and therefore could provide the basis for a membrane leakage assay.

“The receptor we have created requires an extremely low concentration for the dye to be bound,” said Sidorov. In current assays, researchers use high concentrations of probe DPX, a dicationic organic compound used to quench the fluorescence of pyranine. The affinity and specificity of DPX to pyranine is low.

“The problem with using high concentrations of a probe is that it becomes difficult to detect where the activity is actually occurring and difficult to determine the impact it may have on the membrane or cell itself,” he said.

“The therapeutic properties and side effects produced by the wide variety of drugs are tightly associated with their function in cell membranes,” Sidorov said. “Therefore, the methods allowing accurate assessment of these membrane functions have crucial importance for the development of safer and more efficient drugs.”

The assay described in this study allows researchers to assess the mechanism of ion transport, which can detect potential therapeutics against cystic fibrosis and Bartter’s syndrome. Both are inherited genetic diseases associated with the malfunction of natural proteins transporting chloride anions across cell membranes. The synthetic compounds capable of such transport can function in place of compromised proteins and therefore, one day, treat the diseases. Sidorov and his colleagues are also currently investigating the development of such Cl- transporters.

Bartter’s syndrome causes the kidneys to excrete excessive amounts of electrolytes such as potassium, sodium and chloride, resulting in electrolyte abnormalities. Two potential outcomes of Bartter’s syndrome are kidney failure and inner-ear defects resulting in deafness.

This work was supported by grants from the National Science Foundation, VCU startup fund and Jeffress Memorial Trust.

Sathya Achia-Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>