Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It’s a bug’s life: MIT team tells moving tale

29.09.2005


MIT mathematicians have discovered how certain insects can climb what to them are steep, slippery slopes in the water’s surface without moving their limbs -- and do it at high speed.



Welcome to the world of the tiny creatures that live on the surface of ponds, lakes and other standing bodies of water. There, "all the rules change," said David Hu, a graduate student in the Department of Mathematics and first author of a paper on the work to appear in the Sept. 29 issue of Nature.

For the last four years, Hu and John Bush, an associate professor in the department, have been studying the novel strategies these insects use to navigate their environment. To do so, they took high-speed video of the creatures using a camera provided by MIT’s Edgerton Center, then digitized and analyzed the images.


In 2003, the two and Brian Chan, a graduate student in the Department of Mechanical Engineering, reported in Nature how some of these creatures walk on water. Both that paper and the current one were Nature cover stories.

Now Bush and Hu are describing how three species of insects are able to climb the slippery slopes, or menisci, that arise when the water surface meets land, floating bodies or emergent vegetation. Why would they want to leave the water? "There are many reasons, such as laying eggs or escaping predators," said Hu.

Menisci are all around us -- picture the slight upward curve of water in a glass where it meets the side. "But we don’t notice them because they’re so small, only a few millimeters in height," said Hu. But if you’re a creature that’s much smaller than that, those slopes "are like frictionless mountains," Hu said. "Plus, it’s slippery."

In these conditions, the insects’ normal modes of propulsion won’t work. Hu and Bush took high-speed video of insects trying to ascend menisci with a running start and found they got partway up, then slid back down.

The solution? The creatures adopt special postures that create forces that pull them up the slope at speeds of almost 30 body lengths per second (for comparison, an Olympian sprinter moves at about five body lengths per second).

For example, Hu and Bush found that two species of water treaders have retractable claws on their front and hind legs that allow them to "grasp" the surface of the water and pull it into a miniscule peak. The insect simultaneously presses down on the water with its central pair of legs, forming dimples in the water surface that bear the creature’s weight.

Because the insects are so small, these perturbations create forces that suck them up the slope, similar to the way champagne bubbles rise to the edge of a glass.

Bush explains that the insect is actually "generating tiny menisci" with its front and hind legs. Since menisci are attracted to other menisci, the cumulative effect is to pull the insect up and over the meniscus at the water’s edge.

Remember the champagne bubbles? Each essentially forms its own meniscus, hence the attraction to the edge of the glass.

The larva of the waterlily leaf beetle solves the same problem a different way. The sluglike creature simply arches its back, creating menisci at each end. The effect has the same end result, propelling the larva up the slope.

Bush and Hu got involved in this work because they wanted to explain how these creatures do what they do. Bush notes, however, that "the physics is also of interest to people working in nanotechnology because they, too, are concerned with problems at very small length scales."

Hu will be defending his thesis on Sept. 28.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>