Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists show that tick-borne flaviviruses use a novel mechanism to evade host defenses

29.09.2005


Researchers from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, have made the surprising discovery that flaviviruses, which cause such serious diseases as West Nile fever, yellow fever and forms of encephalitis, evade immune system defenses in different ways depending on whether they are transmitted by mosquitoes or ticks. This finding could lead to new approaches to developing vaccines and treatments against these illnesses.



"Flaviviruses exact an enormous toll in terms of illness and death worldwide," notes NIAID Director Anthony S. Fauci, M.D. "Because this is a relatively new field of study, everything we learn about how these viruses operate is significant. This elegant work opens an array of new questions and research opportunities to pursue as we strive to better understand this family of viruses and develop countermeasures against them."

Mosquito-borne flaviviruses include West Nile virus, yellow fever virus, dengue virus and Japanese encephalitis virus; the less-familiar tick-borne flaviviruses are just as serious, causing tick-borne encephalitis or hemorrhagic fevers. Currently, a Japanese encephalitis outbreak is raging in India and Nepal and has killed more than 1,000 people. In Europe and Southeast Asia, tick-borne encephalitis typically results in more than 10,000 patient visits to hospitals annually and has a fatality rate of up to 25 percent in some regions. Viruses that cause encephalitis lead to inflammation of the brain. Hemorrhagic fevers are viral infections that cause capillaries to burst, leading to unusual bleeding on or under the skin or in various organs.


The study released this week online in the Journal of Virology describes how a single virus protein--NS5--from the tick-borne Langat flavivirus counteracts the natural ability of interferon to combat the virus. Langat virus was originally isolated in the 1950s in Malaysia and Thailand. Langat virus can infect people following a tick bite, but there are no cases of natural disease recorded. In the 1970s Langat was briefly used as a live vaccine against more virulent tick-borne encephalitis viruses in Russia but caused encephalitis complications in about 1 of every 10,000 people.

Interferon, the body’s first defense against many viruses, triggers a cascade of immune defenses. According to researchers at NIAID’s Rocky Mountain Laboratories (RML) in Hamilton, MT, NS5 blocks the body’s attempt to signal for immune defenses, preventing the immune system from both stopping the spread of virus and helping the body recover from infection.

Interferon is so critical for recovery from these infections that it is being tested in clinical trials to treat infection with various flaviviruses. But the treatment appears to fail in about half of cases. Dengue virus, West Nile virus and yellow fever virus have a protein called NS4B that prevents interferon from functioning properly. It was thought that the tick-borne flaviviruses would use the same protein, so the NS5 finding was unexpected.

The RML group, directed by Marshall Bloom, M.D., chose Langat virus because it is spread by ticks--a trademark of RML expertise--and because it possesses the same survival mechanisms as the more serious tick-borne encephalitis, Omsk hemorrhagic fever (found in western Siberia) and the closely related Kyasanur forest disease (found in western India).

"These diseases are spread by the same tick that carries Lyme disease in the U.S.," says Dr. Bloom. "So, the fact that West Nile virus first appeared or emerged in the U.S. in 1999 should warn us about the potential for tick-borne flaviviruses to emerge on other continents." In preparation for such a development, Dr. Fauci notes that two other NIAID laboratories have similar flavivirus studies under way, and the three groups are building on the discoveries of each other.

Dr. Bloom says that all flaviviruses have a similar genomic structure, and many scientists thought they would use the same survival mechanism and respond to the same vaccines and therapies, but the RML work shows otherwise.

"NS5 prevents interferon from doing its sentry job and allows the virus to take over cells," says Dr. Bloom. "This is the first definitive study that dissects where the failure occurs in the signaling pathway, and then identifies some of the interacting partners in the cell and virus." Prior to this work, Dr. Bloom says, scientists knew only that NS5 helped tick-borne flaviviruses replicate.

RML’s Sonja Best, Ph.D., who spearheaded the Langat virus work, says the group will continue to study tick-borne flaviviruses by examining the role and location of NS5 in Powassan virus. Powassan virus, found in North America, Russia, China and Southeast Asia, rarely infects people but is potentially fatal. If the research group can track the movement of NS5 in Powassan-infected cells and learn how it interacts with other proteins to block immune defenses, "that would provide a target for therapeutics to counteract tick-borne flaviviruses," says Dr. Best.

Ken Pekoc | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>