Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke scientists explain gaps in nutrient availability within North Atlantic

29.09.2005


Seasonal wedges of undersea water block upwelling of plant sustaining nitrates



Duke University oceanographers have developed an explanation for why a vast North Atlantic circulation zone can have a large variability in nutrient supplies needed to sustain ocean plants and, by extension, support the food web of marine life.

The circulating zone in the North Atlantic Ocean, known as a "subtropical gyre," swirls in a clockwise direction between the Gulf Stream -- the warm current that bisects the Atlantic between the southern U.S. and northern Europe -- and the Tropic of Cancer. This gyre is also the location of the Sargasso Sea.


In a paper in the Sept. 29, 2005, issue of the journal Nature, graduate student Jaime Palter and professors Susan Lozier and Richard Barber show that pockets of water that seasonally wedge themselves into the gyre from the Gulf Stream prohibit deep-ocean nutrients from directly upwelling to the "euphotic" zone, the region near the surface where there is enough light to support plant life.

The scientists are in Duke’s Nicholas School of the Environment and Earth Sciences. Their work was sponsored by the National Science Foundation.

Using satellites to detect the presence of chlorophyll in ocean-borne plant life, the investigators noted a striking correlation between where these nutrients were kept wedged off far below the euphotic zone and where the chlorophyll was low.

As seen from space, this satellite-detected chlorophyll was spread out in ring-shaped patterns on the ocean’s surface, with minimum readings corresponding with the low nutrient concentrations, according to the Duke team. Depressed nutrient levels ultimately limit the "primary productivity" that supports the food chain.

"Researchers have tried for years to look at what processes brings nutrients to the surface," said Lozier, a professor of physical oceanography, in an interview. "Do winds cause upwelling? Do surface waters cool and then overturn and sink to drive nutrients up? Do we get a mixing of waters by winds and waves?

"The answer to all those questions is ’yes.’ But none of those processes, even combined, could really explain the patterns of productivity we saw."

Lozier, Palter and Barber -- a professor of biological oceanography -- made their deductions by consulting satellite information and years of data on water density, temperature and nutrients from previous ocean studies.

Their study focused on "North Atlantic Subtropical Mode Water." Lozier described that as "a large volume of water with the same properties" that gets isolated from the Gulf Stream’s edge when cooled by the air above it during winter.

Because cooler water is denser and heavier, this mode water overturns and sinks to form a large wedge-shaped mass. Sinking below the surface, it has lower nutrient concentrations than that of the surrounding waters. Only with time are the nutrients in this mode water mass restored by the sinking and decay of organic matter from the sunlit surface layers. Since the subtropical gyre has a circulation, the mode water also begins moving around it, potentially blocking nutrients from upwelling in larger areas, Lozier said.

"In parts of the ocean where there is no such wedge of low nutrient water beneath the euphotic zone, vertical processes are much more effective at moving nutrients to the surface, and can therefore have a greater biological effect," added Palter, who is first author of the Nature paper.

How far the mode water moves, and how extensively it blocks the underlying trapped nutrients, depends on the gyre’s power. The power of the gyre is determined by a large scale, cyclical climate pattern called the North Atlantic Oscillation (NAO) -- which irregularly swings between "high" and "low" phases over periods of decades, said the researchers.

During the last "low" NAO, occurring in the 1950s and 60s, "really thick" subtropical mode water spread throughout the subtropical gyre, Lozier said. By contrast, the authors determined that mode water layers should be shallower and less extensive during "high" NAOs, potentially making nutrients more accessible to the euphotic zone.

Indeed, the Duke investigators found that that nitrate concentrations were 25 percent greater in the mode water during the high NAO that began in the 1980s than in the low-NAO 1950s. And primary productivity rates observed in the 50s and 60s were only half those recorded in the last two decades, according to their Nature paper.

These conclusions about NAO effects on nutrient availability are the opposite of what would be expected without accounting for the varying effects of mode water, Lozier said. "We’ve been able to explain that with our ideas."

When a robust gyre spreads around the blanket of mode water, the nutrient recycling system is disrupted. Lozier said. Floating surface plants "can go to the bank, but there’s no money there."

The researchers are now preparing to put out instruments that will give scientists their first time series of nutrient level readings in these subtropical waters, Lozier said.

"The ideas that we lay out here don’t just apply to the subtropical North Atlantic," she said. "We happened to have a lot of available data there to test our ideas. That’s why we have focused there.

"But what we want to do next is start looking at other ocean basins to get a broader view. We may not get the same patterns in other gyres, because the mode waters are different in other basins. But we believe the same mechanics are going to apply."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>