Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit fly studies open new window on cancer research

29.09.2005


Scientists studying the humble fruit fly have found a family of proteins that enhances the sensitivity of a cell to a hormone that can trigger abnormal growth and cancer. Their discovery could lead to a completely new approach to tackling some cancers and the development of new drugs to stop uncontrolled growth in a wide variety of tumour cells.



The researchers at the University of Oxford, funded in part by the Biotechnology and Biological Sciences Research Council (BBSRC), discovered that this family of amino acid transporters are very powerful growth promoters. When the transporters were overexpressed in a fly, its cells became hypersensitive to insulin-like molecules in the body that have a long-term role in promoting cell growth and development and the cells grew excessively.

The amino acid transporters appear to be responsive to nutrients on the surface of the cell and do not need to bring these nutrients into the cell. The action of the transporters was so significant that a defect in one of them reduces a fly’s growth by about half.


Dr Deborah Goberdhan, one of the researchers involved, said, "We are now looking at whether human equivalents of these fruit fly genes act in the same way. If they do, then new drugs or even dietary advice could block their activity and slow down the growth of tumours. This research tells us more about the way insulin works and so it is furthering our understanding of processes associated with diabetes as well as cancer. We’re fortunate that there are a number of groups with clinical interests in these areas in close proximity to us, which should help us assess the medical significance of our discovery."

Fruit flies are used in research because a large amount of data about them has been gathered over the last hundred years. As a simple animal with a life cycle of only two weeks, mutations are easy to generate and study. This basic research at Oxford has now attracted funding from Cancer Research UK to further investigate the processes involved and allow Dr Goberdhan to establish her own group.

Professor Julia Goodfellow, BBSRC Chief Executive, remarked, "Although research into fruit flies may not seem an immediate priority, only fundamental research such as this can provide us with the understanding that leads to new applications. New treatments for illnesses such as cancer will only be found as we increase our knowledge of basic biological processes."

Matt Goode | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>