Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research could help us deliver genes for new bone formation

29.09.2005


UK scientists are working on new methods to regenerate cartilage and bone by delivering genes to stem cells within the body to instruct them to turn into bone cells. The research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), could lead to a new approach to tissue engineering. With the ageing populations of Western countries it holds the potential of significant benefits for patients needing joint replacement or similar treatments.

The new research will use tiny nanoscopic systems that cross the surface of a stem cell and then deliver the genes into that prompt the cell to turn into a bone cell.

Professor Richard Oreffo at the University of Southampton and Dr Martin Garnett and Professor Kevin Shakesheff at the University of Nottingham are developing scaffolds to act as a coating around the nanoscopic gene delivery systems. The scaffold controls the release of the gene delivery systems to generate the prolonged formation and development of bone tissue.



The research teams are using the scaffold technology to develop therapeutic applications. They are investigating the most efficient and effective combinations of genes and delivery scaffold to trigger the highly complex process of bone formation. The technique, if successful, could provide a new source of bone tissue for orthopaedic procedures.

Professor Richard Oreffo, who is leading the team at the University of Southampton, said, "The key to the process is careful selection of the right genes for the job, and then identifying the right scaffold delivery mechanism to deliver the genes to enough stem cells to initiate the bone formation process. This method of gene delivery could provide significant healthcare benefits as trauma, degenerative disease and bone loss with old age all lead to patients needing orthopaedic procedures that require new bone.

Professor Oreffo added "It is important that we explore the potential of new methods and biotechnologies to help meet the healthcare needs of an ageing population. Although research such as this is currently a number of years from being available to patients it is important that fundamental research is carried out so we can develop the knowledge that can lead to clinical applications."

Matt Goode | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>