Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Limelight: The Immune Mechanisms Of Atherosclerosis

29.09.2005


Scientists are depicting a novel scheme for atherosclerosis development, suggesting that this pathology might result from an imbalance between pro-inflammatory processes and calming ones. This is one of intriguing scientific results that emerge from the Second European Vascular Genomics Network Conference (EVGN Conference - Hamburg, September 27th - 30th 2005). These results provide new insights into the role of inflammation in heart disease and led to development of new informative models of blood clot formation and the processes that lead to heart attacks.



The inflammatory process is a sort of alarm bell that indicates the onset of atherosclerosis. In the recent past it had become clear that both innate and acquired immune responses mediated by white blood cells (inflammation) play a critical role in the development of this pathology. By altering tissue homeostasis (i.e. the whole of the metabolic events that maintain internal equilibrium) the inflammatory process paves the way towards the deposition of early fatty streaks. This event in turn stimulates endothelial activation (the endothelium is the inner lining of blood vessels) favouring the recruitment of infiltrating blood cells.

But what seemed quite a chaotic process turned out to be more organized than previously envisaged. Recently, Alain Tedgui, EVGN scientific coordinator (INSERM (Institut National de la Santé et de la Recherche Médicale, Paris, France) and colleagues have provided evidence that the immuno-inflammatory responses are tightly modulated: among the actors there are two anti-inflammatory cytokines that counter-balance the effects of other pro-inflammatory mediators.


“More specifically” points out Tedgui “these cytokines act upon a sub-population of T-cells (Reporter’s note: T-cells cells normally protect us against invading pathogens) called regulatory T cells (Treg), which were shown to control atherosclerosis in a widely used model mouse”. On this basis, scientists are now depicting a novel scheme for atherosclerosis development, suggesting that this pathology might result from an imbalance between pro-inflammatory T-cells and calming ones, the T reg.

In parallel, studies of human atherosclerotic plaques – and of the mechanisms that trigger their rupture - have made considerable progress during this last year. Göran Hansson from the Center for Molecular Medicine at the Karolinska Hospital, Stockholm, investigated the content of such plaques, finding a link between specific infiltrating cells and the production of inflammatory substances. “The start signal of the whole process depends – explains Hansson – also on the involvement of receptors called Toll-like that recognize some endogenous molecules activating the inflammatory signalling pathways”.

Other research led by Chris Jackson in Bristol developed a new mouse model of unstable atherosclerosis, and Jason Johnson used it to identify both harmful and protective roles for enzymes derived from inflammatory cells that either promote repair of or destroy the strength giving collagen components of atherosclerotic plaques. Clearly tight regulation of these enzymes, called metalloproteinases, is essential to obtain their reparative effects while avoiding the destructive ones stemming from their overactivity.

These and other results, albeit very promising, explain only a small component of the complex pathology of atherosclerosis. More experimental studies are certainly needed before clinical trials can be performed on humans. To aid this EVGN has plans next year to generate 9 original mouse strains to address the roles of other candidate therapeutic genes.

EVGN IN EUROPE

The European Vascular Genomics Network (EVGN) is a network of excellence funded by the European Commission under the 6th Framework Programme (Contract Number: LSHM-CT-2003-503254).

Today, cardiovascular diseases (CVDs) rank higher than in the past in the priorities of the National Health Systems of the EU. In fact they account for more deaths than cancer, which is wrongly considered the most malignant pathology in westernized countries. Every year the consequences of CVDs, for example myocardial infarction and strokes, kill some 19 million people worldwide (5 million people in Europe), exacting a toll of more than 500 billion dollars in terms of healthcare costs and loss of productivity for those who survive.

That’s why biomedical research, in particular Vascular Biology, urgently needs support at national and European levels. Europe-wide collaboration facilitates an interdisciplinary approach such as the one provided by the laboratories that belong to EVGN. Such cooperation is particularly appropriate in a newborn field like genomics; to overcome national skill shortages in recently developed investigation tools such as bioinformatics, high throughput systems, proteomics, transcriptomics and metabolomics.

The second year of EVGN activity has proceeded with restless spirit and enthusiasm. “During 2004-2005 the integration between the EVGN groups working in the three thematic areas of the Network - endothelial dysfunction, plaque instability and therapeutic angiogenesis - has considerably strengthened” confirms Alain Tedgui, EVGN scientific coordinator. “As a result we have achieved excellent scientific productivity, for example in terms of quality publications. Just to mention a few: nine publications from at least two EVGN groups have been published in high ranking journals, including Nature Medicine, Journal of Experimental Medicine, Circulation Research and Circulation”.

This year, the EVGN meeting takes place together with the 3rd European Meeting on Vascular Biology and Medicine (www.emvbm.org)

Francesca Noceti | alfa
Further information:
http://www.emvbm.org
http://www.evgn.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>