Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins geneticist discovers mutations in cancer cells that suggest new forms of treatment

27.09.2005


Researchers at Johns Hopkins have identified three new genetic mutations in brain tumors, a discovery that could pave the way for more effective cancer treatments.



The Hopkins team, in conjunction with researchers at the J. Craig Venter Institute in Rockville, Md., discovered DNA abnormalities in two tyrosine kinase proteins already known to disrupt normal cell activity and contribute to tumor formation.

The discovery of these mutations is especially significant, the researchers say, because tyrosine kinases can be targeted using pharmaceuticals.


"We picked these proteins to sequence because receptor tyrosine kinases sit on the cell surface where anticancer drugs can get at them," said Gregory J. Riggins, M.D., co-lead author of the study and an associate professor in the Department of Neurosurgery at The Johns Hopkins University School of Medicine.

In the study, published in the October 4th edition of The Proceedings of the National Academy of Sciences, the researchers identified two of the previously unknown mutations in fibroblast growth receptor 1 (FGFR1) and one in platelet derived growth factor receptor alpha (PDGFRA).

FGFR1 and PDGFRA, said Riggins, have been implicated in several other cancers such as colorectal, breast and ovarian cancer, as well as chronic myelogenous leukemia, gastrointestinal stromal tumors and lymphoma.

Riggins and colleagues analyzed a catalog of 518 protein kinase sequences taken from the Human Genome Project. Using high-throughput gene sequencing equipment based at the Venter Institute’s Joint Technology Center, they resequenced 20 targeted proteins from tissue samples of brain tumor cells from Hopkins. The cells came from 19 glioblastoma tumors from eight females and 11 males ranging in age from 7 to 77 years. Glioblastomas are malignant tumors of the central nervous system usually found in the cortex of the brain.

Researchers discovered the mutations after comparing the resequenced genes with corresponding genes from the human genome sequence.

A previous study by Hopkins researchers, led by Victor Velculescu, M.D., Ph.D., used high-throughput gene sequencing to identify 14 mutated genes that have potential links to the growth of colon cancer cells, according to Riggins. These discoveries suggest potential future therapies that might use small molecules and antibodies to regulate the function of the mutated genes.

The success of that study prompted researchers to take the same approach to search for new drug targets for glioblastoma, a brain tumor for which current therapies are weak.

According the Riggins, the recent advances in genomic information and technology have set the stage for the assembling of a complete catalog of molecular alterations that contribute to cancers. Genes involved in the tyrosine kinase family will be important in these future studies because they play a significant role in signaling between cancer cells and what’s around them. Combined with the remarkable clinical success doctors have had with the molecular targeting of this family of genes, Riggins said, these new findings could result in effective new treatments for cancer.

"The next step," he added, "is to find inhibitors of these mutations and find out how we can reverse the effects of these mutations in the cancer cell. Our hope is that we can target enough of these mutations to treat the cancer."

Eric Vohr | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>