Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hopkins geneticist discovers mutations in cancer cells that suggest new forms of treatment


Researchers at Johns Hopkins have identified three new genetic mutations in brain tumors, a discovery that could pave the way for more effective cancer treatments.

The Hopkins team, in conjunction with researchers at the J. Craig Venter Institute in Rockville, Md., discovered DNA abnormalities in two tyrosine kinase proteins already known to disrupt normal cell activity and contribute to tumor formation.

The discovery of these mutations is especially significant, the researchers say, because tyrosine kinases can be targeted using pharmaceuticals.

"We picked these proteins to sequence because receptor tyrosine kinases sit on the cell surface where anticancer drugs can get at them," said Gregory J. Riggins, M.D., co-lead author of the study and an associate professor in the Department of Neurosurgery at The Johns Hopkins University School of Medicine.

In the study, published in the October 4th edition of The Proceedings of the National Academy of Sciences, the researchers identified two of the previously unknown mutations in fibroblast growth receptor 1 (FGFR1) and one in platelet derived growth factor receptor alpha (PDGFRA).

FGFR1 and PDGFRA, said Riggins, have been implicated in several other cancers such as colorectal, breast and ovarian cancer, as well as chronic myelogenous leukemia, gastrointestinal stromal tumors and lymphoma.

Riggins and colleagues analyzed a catalog of 518 protein kinase sequences taken from the Human Genome Project. Using high-throughput gene sequencing equipment based at the Venter Institute’s Joint Technology Center, they resequenced 20 targeted proteins from tissue samples of brain tumor cells from Hopkins. The cells came from 19 glioblastoma tumors from eight females and 11 males ranging in age from 7 to 77 years. Glioblastomas are malignant tumors of the central nervous system usually found in the cortex of the brain.

Researchers discovered the mutations after comparing the resequenced genes with corresponding genes from the human genome sequence.

A previous study by Hopkins researchers, led by Victor Velculescu, M.D., Ph.D., used high-throughput gene sequencing to identify 14 mutated genes that have potential links to the growth of colon cancer cells, according to Riggins. These discoveries suggest potential future therapies that might use small molecules and antibodies to regulate the function of the mutated genes.

The success of that study prompted researchers to take the same approach to search for new drug targets for glioblastoma, a brain tumor for which current therapies are weak.

According the Riggins, the recent advances in genomic information and technology have set the stage for the assembling of a complete catalog of molecular alterations that contribute to cancers. Genes involved in the tyrosine kinase family will be important in these future studies because they play a significant role in signaling between cancer cells and what’s around them. Combined with the remarkable clinical success doctors have had with the molecular targeting of this family of genes, Riggins said, these new findings could result in effective new treatments for cancer.

"The next step," he added, "is to find inhibitors of these mutations and find out how we can reverse the effects of these mutations in the cancer cell. Our hope is that we can target enough of these mutations to treat the cancer."

Eric Vohr | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>