Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins geneticist discovers mutations in cancer cells that suggest new forms of treatment

27.09.2005


Researchers at Johns Hopkins have identified three new genetic mutations in brain tumors, a discovery that could pave the way for more effective cancer treatments.



The Hopkins team, in conjunction with researchers at the J. Craig Venter Institute in Rockville, Md., discovered DNA abnormalities in two tyrosine kinase proteins already known to disrupt normal cell activity and contribute to tumor formation.

The discovery of these mutations is especially significant, the researchers say, because tyrosine kinases can be targeted using pharmaceuticals.


"We picked these proteins to sequence because receptor tyrosine kinases sit on the cell surface where anticancer drugs can get at them," said Gregory J. Riggins, M.D., co-lead author of the study and an associate professor in the Department of Neurosurgery at The Johns Hopkins University School of Medicine.

In the study, published in the October 4th edition of The Proceedings of the National Academy of Sciences, the researchers identified two of the previously unknown mutations in fibroblast growth receptor 1 (FGFR1) and one in platelet derived growth factor receptor alpha (PDGFRA).

FGFR1 and PDGFRA, said Riggins, have been implicated in several other cancers such as colorectal, breast and ovarian cancer, as well as chronic myelogenous leukemia, gastrointestinal stromal tumors and lymphoma.

Riggins and colleagues analyzed a catalog of 518 protein kinase sequences taken from the Human Genome Project. Using high-throughput gene sequencing equipment based at the Venter Institute’s Joint Technology Center, they resequenced 20 targeted proteins from tissue samples of brain tumor cells from Hopkins. The cells came from 19 glioblastoma tumors from eight females and 11 males ranging in age from 7 to 77 years. Glioblastomas are malignant tumors of the central nervous system usually found in the cortex of the brain.

Researchers discovered the mutations after comparing the resequenced genes with corresponding genes from the human genome sequence.

A previous study by Hopkins researchers, led by Victor Velculescu, M.D., Ph.D., used high-throughput gene sequencing to identify 14 mutated genes that have potential links to the growth of colon cancer cells, according to Riggins. These discoveries suggest potential future therapies that might use small molecules and antibodies to regulate the function of the mutated genes.

The success of that study prompted researchers to take the same approach to search for new drug targets for glioblastoma, a brain tumor for which current therapies are weak.

According the Riggins, the recent advances in genomic information and technology have set the stage for the assembling of a complete catalog of molecular alterations that contribute to cancers. Genes involved in the tyrosine kinase family will be important in these future studies because they play a significant role in signaling between cancer cells and what’s around them. Combined with the remarkable clinical success doctors have had with the molecular targeting of this family of genes, Riggins said, these new findings could result in effective new treatments for cancer.

"The next step," he added, "is to find inhibitors of these mutations and find out how we can reverse the effects of these mutations in the cancer cell. Our hope is that we can target enough of these mutations to treat the cancer."

Eric Vohr | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>