Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer drug might help kids with fatal ’aging’ syndrome

27.09.2005


Johns Hopkins scientists have discovered that a drug currently being tested against cancers might help children with a rare, fatal condition called Hutchinson-Gilford progeria syndrome, which causes rapid, premature aging.



Children with progeria appear normal until they’re 6 months to a year old, but then begin developing symptoms normally associated with old age -- wrinkled skin, hair loss, brittle bones and atherosclerosis, which usually causes their deaths by about age 13. There’s no known treatment.

But the new Hopkins research, and similar results from other labs, shows that a class of drugs known as farnesyl transferase inhibitors, or FTIs, can reverse an abnormality in laboratory-grown cells engineered to mimic cells from progeria patients. Such cells have nuclei that aren’t round like normal nuclei but instead have multiple "lobes" and can even look like a cluster of grapes or bubbles.


In the laboratory, however, treating these engineered cells with an FTI already in clinical trials in cancer patients restored the cells to a normal appearance, the researchers report Sept. 26 in the advance online section of the Proceedings of the National Academy of Sciences. The drug blocks the first step in processing the faulty protein that causes the syndrome.

"We’ve been hopeful that our two decades of research on how proteins are processed and modified in cells might ultimately help people with certain forms of cancer," says Susan Michaelis, Ph.D., professor of cell biology at Johns Hopkins’ Institute for Basic Biomedical Sciences.

"But for progeria, we and others only recently learned that it involves the one of the modified proteins we’ve been studying, a nuclear protein called lamin A. As a basic scientist, it is really exciting to have leapfrogged from studying a fundamental process to finding evidence that an existing drug might be useful in treating a devastating disease in children," she says.

Michaelis emphasizes that no one knows whether making the cells’ nuclei look normal will be enough to reverse the disease process or slow it down. "If it does, this will be a wonderful example of how understanding basic biology can lead to new medical treatments," she says.

The class of drugs they tested prevents the first step in cells’ processing of certain critical proteins in yeast and mammals. For more than 20 years, Michaelis has been studying this complex process.

The process starts with a fully assembled protein, then adds a fatty appendage called farnesyl very close to the protein’s end, and then a tiny modification called a methyl group to a nearby building block. Finally, somewhat inexplicably, two proteins known to be modified in this way then undergo an additional step. For these two proteins, and maybe more, the modified end and the adjoining 15 building blocks -- a fraction of the proteins’ original length -- are chopped off by an enzyme discovered in Michaelis’s lab.

In yeast, the protein that gets the full treatment helps the single-celled organisms reproduce -- and the useful protein is the smaller part with all the fancy modifications. In cells’ processing of lamin A in mammals, however, the plain, big chunk is the active part, and it’s critical for the proper function and organization of cells’ nuclei.

In children with progeria, however, a genetic mutation causes a piece of the original lamin A protein to be deleted, a discovery made by National Institutes of Health researchers and reported in 2003. The Hopkins researchers immediately noticed that also missing was the specific point at which the modified end would normally be chopped off -- a biologically crucial event.

"The normal mammalian protein, lamin A, doesn’t have all those modifications; the modified part is thrown away," says Michaelis. "With the disease mutation, however, that fails to occur. Although the failure to make normal lamin A could have wreaked havoc in a number of ways, we hypothesized at the time that the problems in progeria arose specifically because the modifications persist."

So Michaelis and postdoctoral fellow Monica Mallampalli, Ph.D., set out to test that idea. Mallampalli genetically engineered a human cell line (HeLa) to have either of two mutations in the gene for lamin A. One mutation halted the process at the very beginning, by preventing addition of the fatty farnesyl appendage. The other affected the end of the process by preventing cleavage of the otherwise normal, fully modified protein.

"Neither has the correct lamin A protein, but only one has a modified protein hanging around," says Michaelis. "We found that only the cells with the farnesyl-modified protein had the problems seen in cells with the HGPS mutation."

Mallampalli also altered the version of the gene that produces the abnormal, persistently modified, disease-causing protein, called progerin, to uncover the effect of preventing the addition of farnesyl. Sure enough, even though the cells still didn’t have normal lamin A, their nuclei looked normal when the faulty protein couldn’t get modified.

The researchers then obtained an FTI compound made by Michael Gelb and Pravin Bendale at the University of Washington in Seattle to see whether interfering with the enzyme that adds farnesyl would have the same normalizing effect.

"We were thrilled that, as our genetic studies predicted, the experimental drug did the trick," says Michaelis. "Because FTIs are already in advanced clinical trials with cancer patients and seem to be quite well-tolerated, it’s hopeful that they could be tested in patients with progeria fairly quickly."

Cancers are much more common than the progeria syndrome, which only affects about one in 8,000,000 births a year in the United States. Such rare disorders don’t usually attract the attention of drug developers, but the fortunate coincidence that progeria is caused by a protein that requires farnesyl for processing means that existing drugs might help.

FTIs prevent addition of farnesyl to all proteins that have a particular molecular tag. In cancer, the key target among these proteins is one called Ras, which is activated by the same farnesyl-triggered process as lamin A and which promotes cancerous growth when there’s too much of it.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.pnas.org
http://www.progeriaresearch.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>