Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human beta-cell line offers hope for type 1 diabetes breakthrough

27.09.2005


Transplantation of insulin-producing pancreatic beta-cells shows great promise as a treatment for type 1 diabetes, but development of this therapy has been hampered by a severe shortage of donor beta-cells, which are obtained from decreased human donors. In research published in the October issue of Nature Biotechnology, Ji-Won Yoon, PhD, Professor of Pathology and Director of the Rosalind Franklin Comprehensive Diabetes Center at Rosalind Franklin University of Medicine and Science, Dr. Naoya Kobayashi (Okayama University Graduate School of Medicine and Dentistry), and their international colleagues describe a "reversibly immortalized" cell line that can supply large amounts of insulin-producing human beta-cells. Ultimately, a cell line of this sort may provide an abundant source of beta-cells for transplantation and an alternative to beta-cells from cadavers.



Type 1 diabetes results from the loss of insulin-producing beta-cells in the pancreas. Because the supply of beta-cells from cadavers is insufficient to meet the needs of 99% of diabetic patients, alternative sources of beta-cells would be highly desirable. Previous efforts to coax mature human beta-cells to survive and replicate in the laboratory have not succeeded, however, because the cells died or lost their ability to produce insulin in response to sugar stimulation.

Dr. Yoon, Dr. Kobayashi and colleagues got around this problem by manipulating and analyzing large numbers of human beta-cells. First, they added genes that extend cell lifespan to human beta-cells and looked for the rare cells that did not form tumors and that expressed insulin or other beta-cell proteins. Out of more than 250 cells lines screened, only one passed this test. This cell line was allowed to replicate to produce large numbers of cells. Then, the genes that extend cell lifespan were removed to ensure that the cells would not form tumors and to promote beta-cell behavior. The resulting cells produced about 40% as much insulin as normal beta-cells and successfully controlled blood sugar levels in diabetic mice for more than 30 weeks.


While further research is needed before these cells can be considered for testing in humans, plans to develop a "universal beta-cell line" are well underway, and Dr. Yoon anticipates that human clinical trials might begin as soon as three to five years from now. The discovery of this technique to create a reversibly immortalized beta-cell line represents a significant leap in the quest to develop an effective and universal treatment for type 1 diabetes; it is estimated that 18.2 million Americans suffer from diabetes. The long-term impact of this discovery, and those that will follow, will undoubtedly be profound and far-reaching.

Kathy Peterson | EurekAlert!
Further information:
http://www.rosalindfranklin.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>