Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound reveals new link between signaling protein and cell migration

26.09.2005


University of Illinois at Chicago researchers report that a protein that regulates key signaling pathways in cells also plays a role in controlling the active movement or migration of cells. The finding may suggest new pharmaceutical therapies for treating a variety of diseases, including cancer.



The protein, known as Raf Kinase Inhibitor Protein, or RKIP, controls activity of kinases, a type of enzyme that acts as a key component in the biochemical signaling pathways responsible for determining almost all cellular activity. But RKIP’s own activity is inhibited when a small molecule organic compound called locostatin, discovered earlier by UIC researchers, binds to it.

Lead investigator Gabriel Fenteany, assistant professor of chemistry at UIC, reports the finding in the Sept. 26 issue of the journal Chemistry and Biology.


The researchers used an approach sometimes called "forward chemical genetics" whereby they first identified locostatin as an inhibitor of cell migration, then used locostatin itself as a kind of bait to fish out the protein to which it binds. That protein was RKIP.

"We have implicated this protein in controlling cell migration, a role it was not previously known to play," said Fenteany. "It’s a molecular target of locostatin. We found this on the basis of the chemical affinity of locostatin for this protein."

As a regulatory protein, RKIP controls the functions of kinases, thereby governing signaling pathways. When these pathways are not properly controlled, all kinds of diseases can result, including cancer.

Fenteany and his team also confirmed that RKIP is involved in cell migration by using other methods.

"After finding that locostatin targets RKIP, we wanted to verify that RKIP really does control cell migration," Fenteany said. The researchers removed, or knocked down, RKIP in the cell using a method called RNA interference and looked at the effect on cell migration. They did the opposite manipulation as well -- artificially increasing the amount of RKIP in the cell and again looking at the effect on cell migration. In each case, the result was consistent with RKIP having an important, positive role in the control of cell migration.

"The interest in RKIP now is that it is a new and apparently important modulator of cell migration and therefore a possible target in anti-cancer strategies focused on limiting tumor angiogenesis and metastasis," Fenteany said.

More investigation on how exactly RKIP controls cell migration is needed, Fenteany said. UIC researchers are also trying to determine the potential of locostatin as a drug by looking at its effects on different types of cells and tissues.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

nachricht Computers aid discovery of new, inexpensive material to make LEDs with high color quality
20.02.2018 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

Hidden talents: Converting heat into electricity with pencil and paper

20.02.2018 | Materials Sciences

Rare find from the deep sea

20.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>