Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cell signaling discovery yields heart disease clues


Hughes investigator John Scott long studied signal transduction system

A pulsing heart cell is giving Oregon Health & Science University researchers insight into how it sends and receives signals, and that’s providing clues into how heart disease and other disorders develop.

In a study appearing in today’s edition of Nature, John Scott, Ph.D., a Howard Hughes Medical Institute investigator and senior scientist at OHSU’s Vollum Institute, found that heart muscle cells become enlarged when an intricate intracellular signaling pathway regulated by a messenger molecule called muscle-specific A-kinase anchoring proteins, or mAKAPs, is perturbed.

The cells’ growth, known as cardiomyocyte hypertrophy, can lead to congestive heart failure and other forms of cardiovascular disease, which affect more than 70 million Americans and cause about 1.4 million deaths each year.

A cell communicates with another cell by sending over a messenger molecule, typically a hormone, which activates a secondary regulatory messenger molecule – cyclic AMP (cAMP) – within a particular compartment in the recipient cell. This causes cAMP to stimulate an enzyme that triggers the activity of proteins involved in altering a cell’s physiology and governing other biochemical events. According to Scott, mAKAPs tether the enzyme, called protein kinase A (PKA), to particular locations in the cell.

"Hypertrophy is a fairly good laboratory model for certain forms of heart failure, and the PKA signaling pathway is perturbed in certain cases of heart disease," said Scott, whose laboratory was the among the first in the world to track AKAP interaction. "That’s why this study may have a high translational and clinical impact."

According to the study, the mAKAP signaling system has been linked to excessive heart cell enlargement, which increases the potential for heart disease. One technique involves using drugs, such as a growth hormone, to activate a molecule known as ERK5, which suppresses the enzyme phosphodiesterase. This causes cAMP, which is normally metabolized by phosphodiesterase, to accumulate in certain parts of the cell.

"Many, many phosphodiesterases are drug targets," Scott noted. "So potentially, drugs that could target this particular phosphodiesterase, particularly, could be very useful. That’s still a long way away, but that’s where the work will go. Plus, it fits into a large body of work implicating these molecules as markers for certain forms of heart disease. Heart rate, for example, is controlled by calcium, and there’s some level of regulation by cyclic AMP as well."

To show the signal transduction process in a heart muscle cell, Scott and his colleagues used a fluorescent microscope that captures protein molecules stained with various colored dyes to show PKA activity in a cell. In one set of images, captured over six minutes, a greenish-yellow ring appears to expand around the cell’s nucleus before quickly shrinking. "That’s showing the rise in PKA activity, and the drop," Scott said.

Scott compares a cell to a highly organized city containing a variety of organizations serving particular functions, such as fire and police departments, an airport, a city hall and other entities. They all use one communication system, but information is delivered to, and interpreted by, each entity differently.

"The idea is that the cell is like this three-dimensional city, and at different times of the day, different things happen in the city," he explained. "This family of molecules we work on serves to pinpoint enzymes within three dimensions of the cell, and that’s very important because it means that these enzymes act very locally. What the imaging data in this paper shows is that not only do they work in three dimensions, but there’s this fourth dimension – time."

In addition, he said, "phosphodiesterase is a great drug target that could be something of importance in terms of pharmaceutical intervention at a later date."

Jonathan Modie | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>