Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Scientists Design Method to Fight Artificial Implant Infections with Antibiotics

26.09.2005


Infections associated with inserting a medical device can be devastating, painful, and cause prolonged disability, costing tens of thousands of dollars.



Now, researchers at Jefferson Medical College have found a way to create a permanent chemical bond between antibiotics and titanium, a material used in orthopedic implants. The proof-of-principle study showed that an antibiotic can be connected to the titanium surface in an active form, and can kill bacteria and prevent infection. The work is a critical first step toward developing stable, bacteria-resistant implants to combat infection.

“The biggest benefit of this work is to keep the infection from ever starting,” says Eric Wickstrom, Ph.D., professor of biochemistry and molecular biology at Jefferson Medical College of Thomas Jefferson University, who in collaboration with Noreen Hickok, Ph.D., associate professor of orthopedic surgery at Jefferson Medical College and Allen Zeiger, Ph.D., professor of biochemistry and molecular biology at Jefferson Medical College, developed the bonding method.


Infections associated with orthopedic implants are one of the major causes of implant failure. If bacteria grow on an implant, it can’t knit properly with bone. “Our technique puts a bed of antibiotic nails on the surface of the implant,” Dr. Wickstrom says. “The first time a bacterium lands on those nails, it dies.”

The researchers, along with co-authors Binoy Jose, Ph.D., a former postdoctoral fellow now at SK Biopharmaceuticals, and M.D./Ph.D. student Valentin Antoci, Jr., report their results September 23, 2005 in the journal Chemistry and Biology.

In the work, the scientists fastened the antibiotic vancomycin to titanium powder. The vancomycin could then immediately kill bacteria sensitive to vancomycin that landed on the titanium.

The researchers checked to see if vancomycin was indeed attached to the titanium surface using microscopy. Next, they added a fragment of bacterial cell wall to see if the vancomycin on the powder, or beads, could bind to its natural target. The tests proved that the vancomycin was bound and active.

Finally, they added bacteria and showed that titanium beads with vancomycin on the surface killed the bacteria. When the beads were exposed to more bacteria, the vancomycin continued to kill the new infection. The vancomycin was not only chemically bound, but aggressively curtailed re-infection as well.

The researchers, led by Irving Shapiro, Ph.D., professor of orthopedic surgery at Jefferson Medical College, and including collaborators at the Rothman Institute at Jefferson and the University of Pennsylvania are supported by a grant from the U.S. Department of Defense to develop techniques to protect titanium surfaces with antibiotics.

“The recent results are another step toward our ultimate goal of preventing infections in battlefield fractures and hip and knee implants,” Dr. Shapiro says.

“This technology bonding antibiotics to the implant surface is analogous to having land mines,” says orthopedic surgeon Javad Parvizi, M.D., who treats implant-related infections and works on the project. “Once the organism steps on the surface, the antibiotic mine explodes and kills the bacteria. It holds great promise for our patients.”

When a hip or knee implant is infected, physicians give extensive antibiotic treatment and the old implant is replaced. The treatment can include cement-containing antibiotics. “The hope is that the drugs in the glue will protect the implant, but that doesn’t always work,” Dr. Hickok explains. She notes that while they are infrequent, such infections can occur right after surgery from contamination during the operation. Later, infections can start on the implant from a different source in the body, such as a bladder infection or a dental procedure.

Dr. Wickstrom says the same approach can be used for other antibiotics and other implants. “There are plastic devices – bladder catheters, implants for kidney dialysis, Hickman tubes, pacemakers – every implant you can think of is a magnet for bacteria,” he says. “The idea of having a permanent chemical bond to the metal is a new approach. This can be used for every metal and plastic implant, with every antibiotic.”

While the current work is proof-of-principle for binding titanium to an antibiotic, the research team has received a new grant for $3 million from the National Institutes of Health for five years to investigate ways of encouraging bone growth on implants bearing permanent antibiotics.

“When an infected implant is taken out, it’s usually covered with a slimy layer of bacteria,” Dr. Hickok explains. “We’re moving from just having a bacteria-killing surface to having one that prevents infection while promoting better bone-implant interactions. The idea is to have the implant last for many more years and avoid infection.

“We expect that the ideal chemical bonds will last for years, ideally as long as the implant,” Dr. Hickok says.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht The big clean up after stress
25.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>